cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A075010 a(n) = floor( concatenation of 9 numbers from n+8 to n in that order divided by 9 ).

Original entry on oeis.org

97393690, 109739369, 122085048, 1234430727, 13456776406, 145790122085, 1570134567764, 16823680123443, 179460145790122, 1906834903467901, 20190683490346790, 21313017946014579, 22435352401682368, 23557686857350157, 24680021313017946, 25802355768685735
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits/@Range[n+8,n,-1]]]/9],{n,0,20}] (* Harvey P. Dale, Aug 04 2019 *)

Extensions

More terms from Sascha Kurz, Jan 14 2003
Corrected and extended by Harvey P. Dale, Aug 04 2019

A036377 Floor[concatenation of seven consecutive numbers from n to n+6 divided by 7].

Original entry on oeis.org

17636, 176366, 335096, 493827, 6525558, 81127287, 969871587, 11272873030, 127287303044, 1300158875916, 1444459020216, 1588759164516, 1733059308816, 1877359453117, 2021659597417, 2165959741717, 2310259886017, 2454560030317
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[#/7]&/@(FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Range[0,25],7,1])  (* Harvey P. Dale, Feb 03 2011 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003

A075001 Smallest k such that the concatenation of n consecutive numbers starting with k (from k to n+k-1) is a multiple of n; or 0 if no such number exists.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 9, 1, 4, 7, 1, 5, 23, 1, 14, 1, 9, 9, 13, 5, 1, 21, 1, 13, 12, 1, 36, 21, 9, 3, 41, 1, 34, 33, 9, 21, 12, 9, 33, 9, 1, 13, 28, 5, 48, 1, 23, 21, 3, 1, 11, 13, 14, 41, 28, 1, 114, 115, 9, 41, 21, 9, 23, 69, 1, 61, 73, 5, 14, 43, 1, 145, 13, 9, 127, 41, 9, 95
Offset: 1

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

Conjecture: For every n there exists a k.
First occurrence of k where a(n)=k: 1, 103, 4, 13, 8, 105, 14, 87, 11, 699, 55, 29, 23, 19, 114, 261, 102, 97, 178, 219, 26, 121, 17, 151, 92, ..., . - Robert G. Wilson v
a(n)=1 iff n is in A029455. - Robert G. Wilson v
Increasing a(n)'s: 1, 3, 5, 9, 23, 36, 41, 48, 114, 115, 145, 166, 175, 221, 251, ..., at n = 1, 4, 8, 11, 17, 31, 35, 49, 61, 62, 76, 85, 122, 133, 170, 179, 217, 229, ..., . - Robert G. Wilson v

Examples

			a(11) = 9 as 910111213141516171819 the concatenation of 11 numbers from 9 to 19 is divisible by 11 (11*82737383012865106529).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 1, id = Range@n}, While[k = FromDigits@Flatten@IntegerDigits@id/n; ! IntegerQ@k, id++; c++ ]; c]; Array[f, 82] (* Robert G. Wilson v, Oct 20 2007 *)
  • PARI
    /* The following program assumes the conjecture is true. */ /* It has found nonzero a(n) for n up to 500. */ {for(n=1,500, k=0; until(s%n==0,k++; s=0; for(m=k,k+n-1, s=s*(10^length(Str(m)))+m)); print1(k,","))}
    
  • PARI
    a(n) = {my(ld = 1, hd = n, qd, m = Mod(1, n), pow10, qdn = #digits(n), t=log(10*n+.5)\log(10)); qd = n*t+t-10^t\9; pow10 = Mod(10, n)^(qd-1); for(i = 2, n, m = m * Mod(10, n)^#digits(i) + i; ); while(1, if(lift(m) == 0, return(ld)); m -= ld * pow10; hd++; m = m * Mod(10, n)^#digits(hd) + hd; ld++; pow10*=10^(#digits(hd) - #digits(ld)); ) } \\ David A. Corneth, Aug 23 2020

Extensions

More terms from Rick L. Shepherd, Sep 03 2002

A075004 Floor[ concatenation of n+2, n+1 and n divided by 3 ].

Original entry on oeis.org

70, 107, 144, 181, 218, 255, 292, 329, 366, 3703, 40370, 43737, 47104, 50471, 53838, 57205, 60572, 63939, 67306, 70673, 74040, 77407, 80774, 84141, 87508, 90875, 94242, 97609, 100976, 104343, 107710, 111077, 114444, 117811, 121178, 124545
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			Sequence exhibits similar properties to A074991.
		

Crossrefs

Programs

  • Maple
    70, 107, 144, 181, 218, 255, 292, 329, 366, 3703, seq(floor(((n+2)*10^4+(n+1)*10^2+n)/3),n=10..99);

Extensions

More terms from Sascha Kurz, Jan 14 2003

A075005 Floor[ concatenation of n+3, n+2, n+1 and n divided by 4 ].

Original entry on oeis.org

802, 1080, 1358, 1635, 1913, 2191, 2469, 2746, 27774, 302777, 3280277, 3532802, 3785328, 4037853, 4290378, 4542903, 4795429, 5047954, 5300479, 5553004, 5805530, 6058055, 6310580, 6563105, 6815631, 7068156, 7320681, 7573206
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Programs

  • Maple
    seq(floor(((n+3)*1000+(n+2)*100+(n+1)*10+n)/4), n=0..7), floor(111098/4), floor(1211109/4), seq(floor(((n+3)*1000^2+(n+2)*100^2+(n+1)*10^2+n)/4), n=10..99);

Extensions

More terms from Sascha Kurz, Jan 14 2003

A075007 a(n) = floor(concatenation of n+5, n+4, n+3, n+2, n+1 and n divided by 6).

Original entry on oeis.org

90535, 109053, 127572, 146090, 164609, 183127, 1851646, 20185164, 218685183, 2355201851, 25235520185, 26919021868, 28602523552, 30286025235, 31969526919, 33653028602, 35336530286, 37020031969, 38703533653, 40387035336
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; floor(parse(cat(seq(i,i=n+5 .. n, -1)))/6) end proc:
    map(f, [$0..40]); # Robert Israel, Jan 11 2024
  • Mathematica
    fc[n_]:=Module[{c=Reverse[n]},Floor[FromDigits[Flatten[IntegerDigits/@ c]]/ 6]]; fc/@Partition[Range[0,30],6,1] (* Harvey P. Dale, Nov 09 2014 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A075008 Floor[ concatenation of 7 numbers from n+6 to n in that order divided by 7].

Original entry on oeis.org

934744, 1093474, 1252204, 1410934, 1569664, 15871252, 173015696, 1874444426, 20187444442, 216304458729, 2307344731587, 2451644875887, 2595945020187, 2740245164487, 2884545308787, 3028845453087, 3173145597388, 3317445741688
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits/@Range[n+6,n,-1]]]/7],{n,0,20}] (* Harvey P. Dale, May 20 2021 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A075009 Floor[ concatenation of 8 numbers from n+7 to n in that order divided by 8].

Original entry on oeis.org

9567901, 10956790, 12345679, 13734567, 138873456, 1513887345, 16401388734, 176640138873, 1892664013887, 20189266401388, 214518926640138, 227145189266401, 239771451892664, 252397714518926, 265023977145189
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits/@Range[n,n-7,-1]]]/8], {n,7,30}] (* Harvey P. Dale, Feb 14 2016 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A075006 Floor[ concatenation of n+4, n+3, n+2, n+1 and n divided by 5].

Original entry on oeis.org

8642, 10864, 13086, 15308, 17530, 19753, 21975, 222197, 2422219, 26242221, 282624222, 302826242, 323028262, 343230282, 363432302, 383634323, 403836343, 424038363, 444240383, 464442403, 484644424, 504846444, 525048464, 545250484
Offset: 0

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003
Previous Showing 11-19 of 19 results.