cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A375366 Decimal expansion of (1 + log(Pi/2))/Pi.

Original entry on oeis.org

4, 6, 2, 0, 5, 3, 1, 2, 5, 7, 0, 7, 0, 4, 5, 3, 3, 5, 1, 9, 0, 8, 9, 8, 8, 2, 4, 9, 4, 3, 1, 9, 3, 4, 4, 6, 9, 7, 7, 9, 3, 6, 5, 8, 1, 8, 4, 9, 8, 6, 2, 9, 7, 7, 4, 8, 0, 7, 4, 0, 6, 7, 3, 0, 2, 1, 4, 7, 0, 0, 0, 4, 9, 7, 5, 4, 7, 9, 5, 4, 0, 6, 5, 4, 8, 2, 0
Offset: 0

Views

Author

R. J. Mathar, Aug 13 2024

Keywords

Examples

			0.46205312570704533519089882494319344697793658184986...
		

Crossrefs

Programs

  • Maple
    (1+log(Pi/2))/Pi ; evalf(%) ;
  • Mathematica
    RealDigits[(Log[Pi / 2] + 1)/ Pi, 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)
  • PARI
    (1+log(Pi/2))/Pi \\ Stefano Spezia, Aug 23 2025

Formula

Equals Integral_{x=0..1} sin(Pi*x) log(Gamma(x)) dx.

A334851 Decimal expansion of the number x such that 1 = Integral_{0..x} Log(gamma(t)) dt.

Original entry on oeis.org

2, 7, 5, 5, 0, 1, 6, 8, 5, 6, 6, 9, 0, 4, 8, 4, 8, 6, 8, 7, 9, 2, 9, 0, 5, 5, 0, 7, 4, 8, 1, 4, 7, 3, 6, 9, 0, 7, 5, 0, 0, 5, 9, 7, 5, 4, 6, 3, 7, 0, 4, 6, 4, 4, 1, 4, 4, 7, 9, 8, 8, 2, 7, 9, 5, 0, 2, 5, 5, 5, 3, 4, 5, 3, 5, 2, 4, 3, 1, 0, 7, 1, 7, 4, 3, 5
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2020

Keywords

Examples

			x = 2.75501685669048486879290550748147369075005975463704644144...
		

Crossrefs

Cf. A075700.

Programs

  • Mathematica
    x /. FindRoot[x Log[Gamma[x]] - x LogGamma[x] + PolyGamma[-2, x] - 1, {x, 3},  WorkingPrecision -> 120]  (* Peter J. C. Moses, Jun 27 2020 *)

A385612 Decimal expansion zeta''''(0) (negated).

Original entry on oeis.org

2, 3, 9, 9, 7, 1, 0, 3, 1, 8, 8, 0, 1, 3, 7, 0, 7, 9, 5, 8, 9, 8, 7, 2, 1, 9, 5, 2, 7, 7, 4, 1, 0, 0, 5, 6, 6, 1, 8, 9, 1, 1, 3, 9, 9, 3, 4, 9, 2, 1, 7, 0, 3, 4, 2, 4, 9, 7, 6, 0, 0, 9, 3, 3, 3, 0, 4, 6, 3, 8, 2, 9, 3, 8, 6, 3, 3, 4, 4, 9, 9, 1, 3, 8, 2, 8, 6, 1, 8, 2, 2, 7, 5, 7, 8, 1, 3, 3, 4, 6, 9, 4, 9, 0, 3
Offset: 2

Views

Author

Artur Jasinski, Jul 04 2025

Keywords

Comments

n-th derivative of zeta function at 0 is close to -n!, which here is the present constant close to 4! = 24.

Examples

			23.997103188013707958987219527741...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(4, 0), 120); # Vaclav Kotesovec, Jul 04 2025
  • Mathematica
    RealDigits[-3 EulerGamma^4/2 - EulerGamma^2 Pi^2/4 + 19 Pi^4/480 - 4 EulerGamma^3 Log[2 Pi] - 3 EulerGamma^2 Log[2Pi]^2 +  Pi^2 Log[2 Pi]^2/4 + Log[2 Pi]^4/2 - 6 EulerGamma^2 StieltjesGamma[1] - Pi^2 StieltjesGamma[1]/2 - 12 EulerGamma Log[2 Pi] StieltjesGamma[1] - 6 Log[2 Pi]^2 StieltjesGamma[1] - 6 EulerGamma StieltjesGamma[2] - 6 Log[2Pi] StieltjesGamma[2] - 2 StieltjesGamma[3] + 4 Log[2 Pi] Zeta[3],10,105][[1]]
  • PARI
    -zeta''''(0)

Formula

Equals -3*gamma^4/2 - gamma^2*Pi^2/4 + 19*Pi^4/480 - 4*gamma^3*log(2*Pi) -3*gamma^2*log(2*Pi)^2 + Pi^2*log(2*Pi)^2/4 + log(2*Pi)^4/2 - 6*gamma^2*StieltjesGamma(1) - Pi^2*StieltjesGamma(1)/2 - 12*gamma*log(2*Pi)* StieltjesGamma(1) - 6*log(2*Pi)^2*StieltjesGamma(1) - 6*gamma*StieltjesGamma(2) - 6*log(2*Pi)*StieltjesGamma(2) - 2*StieltjesGamma(3) + 4*log(2*Pi)*zeta(3).
Previous Showing 31-33 of 33 results.