cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A023347 Primes which remain prime through 5 iterations of function f(x) = 8x + 1.

Original entry on oeis.org

831167, 1154567, 2502767, 3019787, 3675197, 5056577, 6352487, 14519177, 26724377, 43003577, 47378927, 47695607, 56406197, 86332457, 86611757, 99568757, 121967987, 126435527, 127990997, 128149127, 128975057, 145281557, 155715407
Offset: 1

Views

Author

Keywords

Examples

			First chain is {831167, 6649337, 53194697, 425557577, 3404460617, 27235684937};
If p is congruent to {1,3,7,9} mod 10, then consecutive iterates are congruent to {9,5,7,3}, {3,1,7,5}, {5,9,7,1} respectively; so only 10k+7 may remain prime through five iterations, as sequence demonstrates nicely. - _Labos Elemer_, Jul 23 2003
		

Crossrefs

Programs

  • Mathematica
    k=0; m=8; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
    it5Q[n_]:=AllTrue[Rest[NestList[8#+1&,n,5]],PrimeQ]; Select[Prime[Range[ 9*10^6]],it5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)

Formula

{p, 8p+1, 64p+9, 512p+73, 4096p+585, 32768p+4681} are all primes, where the initial p is prime.
a(n) == 197 (mod 210). - John Cerkan, Nov 04 2016

A173933 The number of numbers m < k/2 such that m/k is a reduced fraction in the Cantor set, where k= A173931(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 8, 6, 15, 6, 6, 8, 15, 8, 12, 8, 8, 10, 24, 27, 16, 12, 9, 63, 10, 16, 12, 63, 20, 12, 11, 10, 36, 12, 56, 12, 12, 44, 12, 15, 36, 12, 16, 120, 60, 110, 24, 16, 18, 24, 225
Offset: 1

Views

Author

T. D. Noe, Mar 03 2010

Keywords

Comments

When k is a prime of the form (3^r-1)/2, then the m are 2^r-1 numbers (greater than 0) whose base-3 representation consists of only 0's and 1's. Hence, for r=3,7, and 13, the primes k are 13, 1093, and 797161, and the number of m < k/2 is 3, 63, and 4095.

Examples

			When k=40, then 1/k, 3/k, 9/k, and 13/k have base-3 representations containing only the digits 0 and 2.
		

Crossrefs

Programs

  • Mathematica
    Length /@ Last[Transpose[cantor]] (* see A173931 *)

Extensions

Name qualified by Peter Munn, Jul 14 2019

A272106 Absolute primes in base 3: every permutation of digits in base 3 is a prime (only the smallest representatives of the permutation classes are shown).

Original entry on oeis.org

2, 5, 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013
Offset: 1

Views

Author

Chai Wah Wu, Apr 20 2016

Keywords

Comments

For n <= 7, only a(2) = 5 is not a repunit in base 3. Supersequence of A076481. Base 3 analog of A258706.

Crossrefs

A268812 Absolute primes in base 16: every permutation of digits in base 16 is a prime (only the smallest representatives of the permutation classes are shown).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 53, 59, 61, 89, 191, 277, 283, 887, 1373, 1979, 3037
Offset: 1

Views

Author

Chai Wah Wu, Apr 20 2016

Keywords

Comments

Base 16 analog of A258706.

Crossrefs

A272107 Absolute primes in base 8: every permutation of digits in base 8 is a prime (only the smallest representatives of the permutation classes are shown).

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 31, 47, 73, 1759
Offset: 1

Views

Author

Chai Wah Wu, Apr 20 2016

Keywords

Comments

Base 8 analog of A258706.

Crossrefs

A381974 Primes of the form Sum_{k >= 0} floor(m/3^k) for some number m.

Original entry on oeis.org

2, 5, 13, 17, 19, 23, 31, 41, 53, 59, 61, 67, 71, 89, 97, 101, 103, 107, 127, 131, 139, 149, 151, 157, 163, 167, 179, 191, 193, 197, 211, 223, 227, 229, 233, 251, 257, 263, 269, 277, 283, 313, 317, 331, 337, 349, 353, 373, 379, 383, 409, 419, 421, 431, 439
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2025

Keywords

Examples

			[9/1] + [9/3] + [9/9] = 13, where [ ] = floor, so 13 is in the sequence.
		

Crossrefs

Cf. A000040, A381973. Includes A076481.

Programs

  • Maple
    f:= proc(n) local k; add(floor(n/3^k),k=0..ilog[3](n)) end proc:
    select(isprime, map(f, [$2..100])); # Robert Israel, Apr 21 2025
  • Mathematica
    f[n_] := Sum[Floor[n/3^k], {k, 0, Floor[Log[3, n]]}]  (* A004128 *)
    u = Select[Range[400], PrimeQ[f[#]] &]  (* A381973 *)
    Map[f, u]   (* A381974 *)

A086124 Primes generated by linear recursion: f(n) = prime(n) * f(n-1) + 2, f(1) = 1.

Original entry on oeis.org

5, 191, 8831183, 559832762721564181, 3655022053493602810873312808337814473758207442937
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

f(n) = 1, 5, 27, 191, 2103, 27341, 464799, 8831183, 203117211, ... .
a(6) has 298 decimal digits.

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x]*f[x-1]+2; f[1]=1; Do[s=f[n]; If[PrimeQ[s], Print[n]], {n, 1, 1000}]

Formula

a(n) = f(A086125(n)).

A086125 Values of k such that f(k) is a prime, where f(1) = 1, f(i) = prime(i)*f(i-1) + 2.

Original entry on oeis.org

2, 4, 8, 15, 31, 128, 163, 12284
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

No additional terms up to k = 1000. - Harvey P. Dale, Feb 02 2019
No additional terms up to k = 20000. - Michael S. Branicky, May 31 2025

Crossrefs

The primes are in A086124.

Programs

  • Mathematica
    f[1]=1; f[x_] := f[x] = Prime[x]*f[x - 1] + 2; Do[ If[ PrimeQ[ f[n]], Print[n]], {n, 1, 1900}]
    nxt[{n_,a_}]:={n+1,a*Prime[n+1]+2}; Select[NestList[nxt,{1,1},200], PrimeQ[ #[[2]]]&][[All,1]] (* Harvey P. Dale, Feb 02 2019 *)

Extensions

Edited by Robert G. Wilson v, Jul 25 2003
a(8) from Michael S. Branicky, May 29 2025

A086127 Numbers k such that k remains prime after five iteration of function f(j) = 14*f(j)+1, starting at f(1) = prime.

Original entry on oeis.org

4889, 18059, 62639, 225527, 557093, 604973, 700703, 804077, 806903, 837077, 1341203, 1363403, 1932197, 2004269, 2062703, 2284637, 2797463, 3157379, 3493103, 3746399, 3995687, 4155413, 4227893, 4493297, 5534939, 5708603
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

{p, 14p+1, 196p+15, 2744p+211, 38416p+2955, 537824p+41371} are all primes, where p is prime.

Examples

			First chain is: {4889,68447,958259,13415627,187818779,2629462907}.
10th chain is {837077,11719079,164067107,2296939499,32157152987,450200141819}.
		

Crossrefs

Programs

  • Mathematica
    k=0; m=14; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
    Select[Range[6000000],And@@PrimeQ[NestList[14#+1&,#,5]]&] (* Harvey P. Dale, Sep 17 2012 *)

A129734 List of primitive prime divisors of the numbers 3^n-2^n (A001047) in their order of occurrence.

Original entry on oeis.org

5, 19, 13, 211, 7, 29, 71, 97, 1009, 11, 23, 331, 61, 53, 29927, 463, 3571, 17, 401, 129009091, 577, 1559, 745181, 4621, 43, 6217, 35839, 47, 2002867877, 5521, 101, 39756701, 79, 4057, 397760329, 369181, 68629840493971, 31, 241, 617671248800299, 3041, 14177
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Comments

Read A001047 term-by-term, factorize each term, write down any primes not seen before.

Crossrefs

Extensions

a(41) and a(42) switched by Amiram Eldar, Jun 30 2023
Previous Showing 11-20 of 25 results. Next