cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A224937 Number of partitions of n having T(n,k) odd parts in excess on even places over odd places.

Original entry on oeis.org

0, 1, 1, 0, 0, 2, 0, 2, 0, 1, 0, 0, 5, 0, 0, 5, 0, 2, 1, 0, 10, 0, 0, 10, 0, 5, 2, 0, 20, 0, 0, 20, 0, 10, 0, 5, 0, 36, 0, 1, 0, 0, 36, 0, 20, 0, 0, 10, 0, 65, 0, 2, 0, 0, 65, 0, 36, 0, 0, 20, 0, 110, 0, 5, 1, 0, 110, 0, 65, 0, 0, 36, 0, 185, 0, 10, 2, 0, 185, 0, 110, 0, 0, 65, 0, 300, 0, 20
Offset: 0

Views

Author

Wouter Meeussen, Apr 20 2013

Keywords

Comments

Row lengths are 2*floor((3 + sqrt(1+8*n))/4), k runs from -floor((3 + sqrt(1+8*n))/4) up to floor((-1 + sqrt(1+8*n))/4); row sums are A000041.
P. D. Hanna remarks that "zig-zag" diagonals/antidiagonals produce A077028 (Rascal triangle).

Examples

			In the table below, replace each integer i with A000720(i) to get the  current sequence:
-3     -2      -1       0       1       2 (= k)(n= )
                0       1                         0
                1       0                         1
                0       2                         2
        0       2       0       1                 3
        0       0       3       0                 4
        0       3       0       2                 5
        1       0       4       0                 6
        0       4       0       3                 7
        2       0       5       0                 8
        0       5       0       4                 9
0       3       0       6       0       1         10
0       0       6       0       5       0         11
0       4       0       7       0       2         12
0       0       7       0       6       0         13
0       5       0       8       0       3         14
1       0       8       0       7       0         15
...
The table then starts as:
0  0,1
1  1,0
2  0,2
3  0,2,0,1
4  0,0,5,0
5  0,5,0,2
6  1,0,10,0
7  0,10,0,5
8  2,0,20,0
9  0,20,0,10
10 0,5,0,36,0,1
  ...
The partitions of n=5 then give (0,5,0,2) for k=(-2,-1,0,1); this corresponds to 5 partitions with -1 excess odd parts on even over odd positions, and 2 with 1 excess, namely (4,1') and (2,1',1,1') where odd parts on even positions are marked by a quote.
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ x^Floor[(3+Sqrt[1+8*n])/4]* Tr[x^Tr[(-1)^Mod[Flatten[Position[#,_?OddQ]],2]]&/@Partitions[n]],x],{n,0,12}]; (* or *)
    a712[n_Integer]:= a712[n] =If[n<0, 0, (# . Reverse[#])& [PartitionsP[ Range[0, n] ]]]; Table[If[Mod[n+k,2]==1,0,a712[-1+Max[0,(2+n-k*(2*k+1))/2]]],{n,0,12},{k,-Floor[(3+Sqrt[1+8*n])/4],Floor[(-1+Sqrt[1+8*n])/4]}]

A329854 Triangle read by rows: T(n,k) = ((n - k)*(n + k - 1) + 2)/2, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 7, 6, 4, 1, 11, 11, 10, 8, 5, 1, 16, 16, 15, 13, 10, 6, 1, 22, 22, 21, 19, 16, 12, 7, 1, 29, 29, 28, 26, 23, 19, 14, 8, 1, 37, 37, 36, 34, 31, 27, 22, 16, 9, 1, 46, 46, 45, 43, 40, 36, 31, 25, 18, 10, 1, 56, 56, 55, 53, 50, 46, 41, 35, 28, 20, 11, 1
Offset: 0

Views

Author

Werner Schulte, Nov 22 2019

Keywords

Comments

This triangle equals A309559 with reversed rows and supplemented main diagonal (all terms are 1).
There are two lower triangular matrices M and N so that the matrix product M * N equals T (seen as a matrix).
/ 1 \ / 1 \
| 0 1 | | 1 1 |
| 0 1 1 | | 1 1 1 |
M(n,k) = | 0 1 2 1 | N(n,k) = | 1 1 1 1 |
| 0 1 2 3 1 | | 1 1 1 1 1 |
| 0 1 2 3 4 1 | | 1 1 1 1 1 1 |
\ . . . . . . . / \ . . . . . . . /
The matrix product N * M equals the rascal triangle A077028 (seen as a matrix).

Examples

			The triangle T(n,k) starts:
n \ k :   0    1    2    3    4    5    6    7    8    9   10   11
==================================================================
   0  :   1
   1  :   1    1
   2  :   2    2    1
   3  :   4    4    3    1
   4  :   7    7    6    4    1
   5  :  11   11   10    8    5    1
   6  :  16   16   15   13   10    6    1
   7  :  22   22   21   19   16   12    7    1
   8  :  29   29   28   26   23   19   14    8    1
   9  :  37   37   36   34   31   27   22   16    9    1
  10  :  46   46   45   43   40   36   31   25   18   10    1
  11  :  56   56   55   53   50   46   41   35   28   20   11    1
etc.
		

Crossrefs

Row sums equal A116731(n+1).
Row sums apart from column 0 equal A081489.

Formula

O.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((t^2+(1-t)^2) * (1-x*t) + x * t^2 * (1-t)) / ((1-t)^3 * (1-x*t)^2).
G.f. of column k: Sum_{n>=k} T(n,k) * t^n = t^k * (t^2/(1-t)^3 + 1/(1-t) + k*t/(1-t)^2) for k >= 0.
T(n,k) = 1 + T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 0 < k < n with initial values T(n,0) = (n*(n-1)+2)/2 and T(n,n) = 1 for n >= 0.
T(n,k) = (2 + T(n-1,k-1) * T(n-1,k+1)) / T(n-2,k) for 0 < k < n-1 with initial values given above and T(n,n-1) = n for n > 0.
Referring to the triangle M(n,k) (see comments), we get:
(1) Sum_{k=0..n} (k+1) * M(n,k) = A116731(n+1) for n >= 0;
(2) Sum_{k=1..n} k * M(n,k) = A081489(n) for n >= 1.
T(n,k) = T(n-1,k-1) + n-k for 0 < k <= n with initial values T(n,0) = (n*(n-1)+2)/2 for n >= 0.
T(n,k) = 2 * T(n-1,k-1) - T(n-2,k-2) for 1 < k <= n with initial values T(0,0) = 1 and T(n,0) = T(n,1) = (n*(n-1)+2)/2 for n > 0.
Previous Showing 41-42 of 42 results.