cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 108 results. Next

A175765 Pairs (t,t+8) of 3-almost primes t separated by 8.

Original entry on oeis.org

12, 20, 20, 28, 42, 50, 44, 52, 68, 76, 70, 78, 102, 110, 116, 124, 117, 125, 130, 138, 164, 172, 174, 182, 182, 190, 222, 230, 230, 238, 236, 244, 238, 246, 258, 266, 282, 290, 284, 292, 310, 318, 325, 333, 366, 374, 402, 410, 404, 412, 410, 418, 418, 426, 426, 434
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 30 2010

Keywords

Comments

Pairs (12,20), (20,28), (42,50) etc, sorted by the smaller member, such that both numbers are members of A014612 and their difference is 8.

Crossrefs

Extensions

Corrected (236 replaced by 238, 258, 266 inserted etc.) by R. J. Mathar, Sep 01 2010

A176811 Number of primes between 2*(lesser of n-th twin prime pair) and 2*(greater of n-th twin prime pair).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 26 2010

Keywords

Comments

Number of primes between 2*A001359(n) and 2*A006512(n).
Number of primes between A108605(n) and A176810(n).
Number of primes between 2*A077800(2n-1) and 2*A077800(2n).

Examples

			a(1)=1 because 2*3 < 7 (prime) < 2*5;
a(2)=2 because 2*5 < 11 (prime) < 13(prime) < 2*7;
a(3)=1 because 2*11 < 23 (prime) < 2*13.
		

Crossrefs

Programs

  • Maple
    A001359 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a+2) then return a; end if; end do: end if; end proc:
    A006512 := proc(n) A001359(n)+2 ; end proc:
    A176811 := proc(n) numtheory[pi](2*A006512(n)) - numtheory[pi](2*A001359(n)) ; end proc:
    seq(A176811(n),n=1..120) ; # R. J. Mathar, Apr 27 2010
  • Mathematica
    PrimePi[2*#[[2]]]-PrimePi[2*#[[1]]]&/@Select[Partition[Prime[Range[1000]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

Terms corrected starting at a(34) by R. J. Mathar, Apr 27 2010

A176831 List of all primes p such that 2*A099609(2n-1)A099609(2n).

Original entry on oeis.org

5, 7, 11, 13, 23, 37, 59, 61, 83, 277, 359, 383, 397, 457, 479, 541, 563, 839, 863, 1201, 1237, 1283, 1319, 1321, 1619, 1621, 1657, 2039, 2063, 2099, 2459, 2557, 2579, 2857, 2903, 2963, 3217, 3863, 4057, 4177, 4259, 4261, 4283, 4621, 4679, 5099, 5101, 5581
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2010

Keywords

Comments

Where A099609 is a naive list of twin primes (A077800 prefixed by 2,3).

Examples

			a(1)=5 because 2*A099609(2*1-1)=4<5(prime)<2*A099609(2*1)=6;
a(2)=7 because 2*A099609(2*2-1)=6<7(prime)<2*A099609(2*2)=10;
a(3)=11 and a(4)=13 because 2*A099609(2*3-1)<11(prime)<13(prime)<2*A099609(2*3).
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Map[Select[Range @@ #, PrimeQ] &, 2 Select[Partition[#, 2, 1] &@ Prime@ Range@ 410, First@ Differences@ # <= 2 &]] (* Michael De Vlieger, Mar 18 2017 *)

Extensions

Entries checked by R. J. Mathar, May 10 2010

A241560 Decimal expansion of the sum of the reciprocals of the averages of the twin prime pairs.

Original entry on oeis.org

9, 2, 8, 8, 3, 5, 8, 2, 7, 1, 3
Offset: 0

Views

Author

Omar E. Pol, May 07 2014

Keywords

Comments

This constant is due to JJGJJG, see link section.
Denominators are in A014574.

Examples

			0.92883582713... = Sum_{k>=1} 1/A014574(k) = 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + ...
		

Crossrefs

A245568 Initial members of prime quadruples (n, n+2, n+24, n+26).

Original entry on oeis.org

5, 17, 617, 857, 1277, 1427, 1697, 2087, 2687, 3557, 4217, 5417, 5477, 7307, 8837, 9437, 10067, 13877, 17657, 18287, 20747, 21587, 23537, 25577, 27917, 28547, 30467, 32117, 32297, 35507, 37337, 37547, 40127, 41177, 41387, 41957
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 09 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n, n+2, n+24, n+26).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n) = 30*n + 17), A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).
A253624 is a subsequence of this sequence.

Examples

			For n = 17, the numbers 17, 19, 41, 43 are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605, A253624.

Programs

  • Mathematica
    a245568[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 24], PrimeQ[# + 26]] &]; a245568[5000] (* Michael De Vlieger, Jan 11 2015 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+24) and isprime(n+26): print(n,end=', ')

A247089 Initial members of prime quadruples (p, p+2, p+30, p+32).

Original entry on oeis.org

11, 29, 41, 71, 107, 149, 197, 239, 281, 431, 569, 827, 1019, 1031, 1061, 1289, 1451, 1667, 1997, 2081, 2111, 2237, 2309, 2657, 2969, 3299, 3329, 3359, 3527, 3821, 4019, 4127, 4229, 4241, 4517, 5849, 6269, 6659, 6761, 7457, 7559, 8597
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 10 2015

Keywords

Comments

Primes p such that (p, p+2) and (p+30, p+32) are twin prime pairs.
This sequence is a subsequence of A001359 (lesser of twin primes).
The subset of terms ending in 1 in this sequence is a subsequence of A132232 (primes, 11 mod 30).
The subset of terms ending in 7 in this sequence is a subsequence of A141860 (primes, 2 mod 15).
The subset of terms ending in 9 in this sequence is a subsequence of A132236 (primes, 29 mod 30).

Examples

			For n=11, the numbers 11, 13, 41, 43, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A001359, A132232, A132236, A141860, A181603 (twins, end 1), A181605 (twins, end 7), A181606 (twins, end 9).

Programs

  • Mathematica
    a247089[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 30], PrimeQ[# + 32]] &]; a247089[1100] (* Michael De Vlieger, Jan 11 2015 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+30) and isprime(n+32): print(n,end=', ')

A248523 Initial members of prime quadruples (n, n+2, n+144, n+146).

Original entry on oeis.org

5, 137, 1787, 1997, 2237, 2657, 3527, 4127, 4337, 4787, 8087, 12107, 13757, 14447, 17987, 19697, 21377, 23057, 23687, 31247, 32297, 34157, 34367, 35447, 37547, 38567, 39227, 43397, 48677, 51197, 51827, 53087, 58907, 65027, 65837
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 11 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+144,n+146).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).

Examples

			For n=137, the numbers 137, 139, 281, 283, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605.

Programs

  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
        if isprime(n) and isprime(n+2) and isprime(n+144) and isprime(n+146): print(n,end=', ')

A248661 Initial members of prime quadruples (n, n+2, n+54, n+56).

Original entry on oeis.org

5, 17, 137, 227, 827, 1427, 1667, 1877, 2027, 2087, 2657, 3527, 3767, 4217, 4967, 10037, 11117, 11777, 12107, 13877, 17987, 19697, 20717, 21557, 22037, 23687, 24977, 27527, 27737, 34157, 37307, 41177, 42017, 42407, 47657, 48677
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 11 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+54,n+56).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (primes, 30n-13), A181605 (twin primes, end 7), and A092340 (prime n, where n^2+2*n divides (fibonacci(n^2)+fibonacci(2*n))).

Examples

			For n=17, the numbers 17, 19, 71, 73, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605, A092340.

Programs

  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+54) and isprime(n+56): print(n,end=', ')

A252862 Initial members of prime sextuples (n, n+2, n+6, n+8, n+18, n+20).

Original entry on oeis.org

11, 18041, 97841, 165701, 392261, 663581, 1002341, 1068701, 1155611, 1329701, 1592861, 1678751, 1718861, 1748471, 2159231, 2168651, 2177501, 2458661, 2596661, 3215741, 3295541, 3416051, 3919241, 4353311, 5168921, 5201291, 5205461, 6404771
Offset: 1

Views

Author

Karl V. Keller, Jr., Dec 23 2014

Keywords

Comments

This sequence is prime n, where there exist three twin prime pairs of (n,n+2), (n+6,n+8) and (n+18,n+20).
This is a subsequence of A132232 (Primes congruent to 11 mod 30 ).
Also, this is a subsequence of A128467 (30k+11).

Examples

			For n = 18041, the numbers, 18041, 18043, 18047, 18049, 18059, 18061, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A030430 (primes,10*n+1), A132232, A128467, A172456.

Programs

  • Mathematica
    Select[Prime[Range[2500]], Union[PrimeQ[{#, # + 2, # + 6, # + 8, # + 18, # + 20}]] = {True} &] (* Alonso del Arte, Dec 23 2014 *)
    Select[Prime[Range[450000]],AllTrue[#+{2,6,8,18,20},PrimeQ]&] (* Harvey P. Dale, Jun 11 2023 *)
  • PARI
    forprime(p=1,10^7,if(isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+18) && isprime(p+20), print1(p,", "))) \\ Derek Orr, Dec 31 2014
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+8) and isprime(n+18) and isprime(n+20): print(n,end=', ')
    

A253627 Initial members of prime sextuples (n, n+2, n+12, n+14, n+18, n+20).

Original entry on oeis.org

179, 809, 5639, 9419, 62969, 88799, 109829, 284729, 452519, 626609, 663569, 855719, 983429, 1003349, 1146779, 1322159, 2116559, 2144489, 2668229, 3153569, 3437699, 4575269, 4606559, 4977419, 5248079, 5436269, 5450099, 5651729
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 06 2015

Keywords

Comments

This sequence is prime n, where there exist three twin prime pairs of (n,n+2), (n+12,n+14) and (n+18,n+20).
This is a subsequence of each of the following: A128469(30n+29), A060229(smaller of twin primes of 30n+29).
The prime sextuple does not have to comprise only consecutive primes. - Harvey P. Dale, Aug 15 2016

Examples

			For n= 809, the numbers, 809, 811, 821, 823, 827, 829, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A001359, A128469, A060229.

Programs

  • Mathematica
    a253627[n_] := Select[Range@n, And[PrimeQ[#], PrimeQ[# + 2], PrimeQ[# + 12], PrimeQ[# + 14], PrimeQ[# + 18], PrimeQ[# + 20]] &]; a253627[10^7] (* Michael De Vlieger, Jan 06 2015 *)
    Select[Prime[Range[400000]],AllTrue[#+{2,12,14,18,20},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+12) and isprime(n+14) and isprime(n+18) and isprime(n+20): print(n,end=', ')
Previous Showing 61-70 of 108 results. Next