A125802
Column 4 of table A125800; also equals row sums of matrix power A078122^4.
Original entry on oeis.org
1, 5, 35, 485, 15200, 1144664, 215155493, 103674882878, 130648799730635, 437302448840089232, 3936208033244539574405, 96244898501021613327012635, 6446494058446469307795159512465, 1191218783863555524342034469450207222
Offset: 0
-
a(n)=local(p=4,q=3,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^p)[n+1,c+1]))
A125803
Column 5 of table A125800; also equals row sums of matrix power A078122^5.
Original entry on oeis.org
1, 6, 51, 861, 32856, 3013980, 690729981, 406279238154, 625750288074015, 2563196032703643450, 28270494794022487841733, 848050124165724284639262951, 69769378541879435090796205851249
Offset: 0
-
a(n)=local(p=5,q=3,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^p)[n+1,c+1]))
A078123
Square of infinite lower triangular matrix A078122.
Original entry on oeis.org
1, 2, 1, 5, 6, 1, 23, 51, 18, 1, 239, 861, 477, 54, 1, 5828, 32856, 25263, 4347, 162, 1, 342383, 3013980, 3016107, 699813, 39285, 486, 1, 50110484, 690729981, 865184724, 253656252, 19053063, 354051, 1458, 1, 18757984046, 406279238154
Offset: 0
Square of A078122 = A078123 as can be seen by 4 X 4 submatrix:
[1,_0,_0,0]^2=[_1,_0,_0,_0]
[1,_1,_0,0]___[_2,_1,_0,_0]
[1,_3,_1,0]___[_5,_6,_1,_0]
[1,12,_9,1]___[23,51,18,_1]
-
S:= proc(i, j) option remember;
add(M(i, k)*M(k, j), k=0..i)
end:
M:= proc(i, j) option remember; `if`(j=0 or i=j, 1,
add(S(i-1, k)*M(k, j-1), k=0..i-1))
end:
seq(seq(S(n,k), k=0..n), n=0..10); # Alois P. Heinz, Feb 27 2015
-
S[i_, j_] := S[i, j] = Sum[M[i, k]*M[k, j], {k, 0, i}]; M[i_, j_] := M[i, j] = If[j == 0 || i == j, 1, Sum[S[i-1, k]*M[k, j-1], {k, 0, i-1}]]; Table[Table[S[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
A111841
Number of partitions of 3^n-1 into powers of 3, also equals column 0 of triangle A111840, which shifts columns left and up under matrix cube.
Original entry on oeis.org
1, 1, 3, 18, 216, 5589, 336555, 49768101, 18707873562, 18299531019402, 47379925800261099, 328983441917303863134, 6190598463101580564238419, 318441251661562459898972204796, 45106336219710244780433937129788943
Offset: 0
-
{a(n,q=3)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,1]))}
Original entry on oeis.org
1, 2, 12, 238, 15200, 3013980, 1828979530, 3373190565626, 18837339867421686, 317817051628161116674, 16176220447967300610844988, 2481251352301850541661479580329, 1146112129196402690505198891390847384
Offset: 0
-
a(n)=local(q=3,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^n)[n+1,c+1]))
A125805
Antidiagonal sums of table A125800.
Original entry on oeis.org
1, 2, 4, 10, 41, 361, 7741, 417212, 57581062, 20688363559, 19625079296963, 49742424992663959, 340292157995636104240, 6337196928437059669994069, 323627960380394115802942263514, 45610724032832026072070666274435391
Offset: 0
-
a(n)=local(q=3,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^(c+1))[n-c+1,1]))
Comments