cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A181846 Triangle read by rows: T(n,k) = Sum_{c in P(n,n-k+1)} gcd(c) where P(n,m) = A008284(n,m) is the number of partitions of n into m parts.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 2, 5, 1, 1, 2, 4, 6, 6, 1, 1, 2, 3, 4, 3, 7, 1, 1, 2, 3, 6, 6, 8, 8, 1, 1, 2, 3, 5, 6, 9, 6, 9, 1, 1, 2, 3, 5, 8, 10, 10, 11, 10, 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 11, 1, 1, 2, 3, 5, 7, 12, 14, 19, 19, 17, 12, 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 13
Offset: 1

Views

Author

Peter Luschny, Dec 07 2010

Keywords

Comments

See A181842 for the definition of 'partition'.

Examples

			[1]   1
[2]   1   2
[3]   1   1   3
[4]   1   1   3   4
[5]   1   1   2   2   5
[6]   1   1   2   4   6   6
[7]   1   1   2   3   4   3   7
		

Crossrefs

Cf. A078392.

Programs

  • Maple
    with(combstruct):
    a181846_row := proc(n) local k,L,l,R,part;
    R := NULL;
    for k from 1 to n do
       L := 0;
       part := iterstructs(Partition(n),size=n-k+1):
       while not finished(part) do
          l := nextstruct(part);
          L := L + igcd(op(l));
       od;
       R := R,L;
    od;
    R end:
  • Mathematica
    T[n_, k_] := GCD @@@ IntegerPartitions[n, {n-k+1}] // Total;
    Table[T[n, k], {n, 1, 13}, {k, 1, n}] (* Jean-François Alcover, Jun 22 2019 *)

Extensions

Extended to 13 rows by Jean-François Alcover, Jun 22 2019

A333697 a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * p(d), where p = A000041 (partition numbers).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 14, 22, 31, 46, 59, 89, 114, 158, 201, 281, 337, 472, 570, 756, 936, 1233, 1456, 1926, 2323, 2942, 3556, 4537, 5334, 6812, 8088, 10021, 11997, 14805, 17432, 21601, 25507, 30971, 36606, 44543, 52106, 63219, 74097, 88680, 104281, 124708, 145205, 173429, 202124
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^PrimeNu[n/d] EulerPhi[Last[Select[Divisors[n/d], SquareFreeQ]]] PartitionsP[d], {d, Divisors[n]}], {n, 50}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = sumdiv(n, d, (-1)^omega(n/d) * eulerphi(rad(n/d)) * numbpart(d)); \\ Michel Marcus, Apr 03 2020

Formula

a(n) = Sum_{d|n} A023900(n/d) * A000041(d).
a(n) = Sum_{d|n} A047968(n/d) * mu(d) * d.
Sum_{k=1..n} a(gcd(n,k)) = A000041(n).
Previous Showing 11-12 of 12 results.