A181846 Triangle read by rows: T(n,k) = Sum_{c in P(n,n-k+1)} gcd(c) where P(n,m) = A008284(n,m) is the number of partitions of n into m parts.
1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 2, 5, 1, 1, 2, 4, 6, 6, 1, 1, 2, 3, 4, 3, 7, 1, 1, 2, 3, 6, 6, 8, 8, 1, 1, 2, 3, 5, 6, 9, 6, 9, 1, 1, 2, 3, 5, 8, 10, 10, 11, 10, 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 11, 1, 1, 2, 3, 5, 7, 12, 14, 19, 19, 17, 12, 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 13
Offset: 1
Examples
[1] 1 [2] 1 2 [3] 1 1 3 [4] 1 1 3 4 [5] 1 1 2 2 5 [6] 1 1 2 4 6 6 [7] 1 1 2 3 4 3 7
Crossrefs
Cf. A078392.
Programs
-
Maple
with(combstruct): a181846_row := proc(n) local k,L,l,R,part; R := NULL; for k from 1 to n do L := 0; part := iterstructs(Partition(n),size=n-k+1): while not finished(part) do l := nextstruct(part); L := L + igcd(op(l)); od; R := R,L; od; R end:
-
Mathematica
T[n_, k_] := GCD @@@ IntegerPartitions[n, {n-k+1}] // Total; Table[T[n, k], {n, 1, 13}, {k, 1, n}] (* Jean-François Alcover, Jun 22 2019 *)
Extensions
Extended to 13 rows by Jean-François Alcover, Jun 22 2019
Comments