cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A360667 Triangle read by rows: T(n,m)=4^(n-1)*C(n,m)*C(3*n/2-2,n-1)/n, for 0 <= m <= n, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 10, 30, 30, 10, 64, 256, 384, 256, 64, 462, 2310, 4620, 4620, 2310, 462, 3584, 21504, 53760, 71680, 53760, 21504, 3584, 29172, 204204, 612612, 1021020, 1021020, 612612, 204204, 29172, 245760, 1966080, 6881280, 13762560, 17203200, 13762560, 6881280, 1966080, 245760
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 16 2023

Keywords

Examples

			Triangle T(n, m) starts:
[0] 1;
[1] 1,     1;
[2] 2,     4,      2;
[3] 10,    30,     30,       10;
[4] 64,    256,    384,      256,    64;
[5] 462,   2310,   4620,     4620,   2310,    462;
[6] 3584,  21504,  53760,    71680,  53760,   21504,    3584;
[7] 29172, 204204, 612612,   1021020,1021020, 612612,   204204,  29172;
		

Crossrefs

Cf. A078531.

Programs

  • Mathematica
    T[0, 0] = 1;
    T[n_, m_] := 4^(n-1)*Binomial[n, m]*Binomial[3n/2-2, n-1]/n;
    Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2023 *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else (4^(n-1)*binomial(n,m)*binomial((3*n)/2-2,n-1))/(n);

Formula

G.f.: sin(arcsin(216*x^2*(y+1)^2-1)/3)/6+13/12.
G.f.: 1+x*(sqrt(3)/2)*(sech(arccosh(-sqrt(108)*x*(1+y))/3))*(1+y).

A367384 Expansion of g.f. A(x) satisfying A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.

Original entry on oeis.org

1, 2, 16, 172, 2120, 28264, 396192, 5746480, 85394656, 1291778368, 19805198784, 306834276416, 4793670528640, 75415927948416, 1193652980090880, 18994846756882176, 303766882134726144, 4880209392051146752, 78739290124904116224, 1275444751485628848128, 20735204112205333970944
Offset: 1

Views

Author

Paul D. Hanna, Dec 29 2023

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 16*x^3 + 172*x^4 + 2120*x^5 + 28264*x^6 + 396192*x^7 + 5746480*x^8 + 85394656*x^9 + 1291778368*x^10 + ...
where A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 36*x^4 + 408*x^5 + 5184*x^6 + 70512*x^7 + 1002864*x^8 + 14711456*x^9 + 220670592*x^10 + ...
A(x)^3 = x^3 + 6*x^4 + 60*x^5 + 716*x^6 + 9384*x^7 + 130344*x^8 + 1882576*x^9 + 27950736*x^10 + ...
Let Ai(x) be the series reversion of A(x), then
Ai(x)^2 = A(x)^2 - 8*A(x)^3 = x^2 - 4*x^3 - 12*x^4 - 72*x^5 - 544*x^6 - 4560*x^7 - 39888*x^8 - 349152*x^9 - 2935296*x^10 - ...
and
Ai(x) = sqrt(A(x)^2 - 8*A(x)^3) = x - 2*x^2 - 8*x^3 - 52*x^4 - 408*x^5 - 3512*x^6 - 31584*x^7 - 287056*x^8 - 2560288*x^9 - ...
Also,
A(A(x)) = x + 4*x^2 + 40*x^3 + 512*x^4 + 7392*x^5 + 114688*x^6 + 1867008*x^7 + 31457280*x^8 + 543921664*x^9 + ... + 2^n*A078531(n)*x^(n+1) + ...
which satisfies A(A(x))^2 - 8*A(A(x))^3 = x^2, where
A(A(x))^2 = x^2 + 8*x^3 + 96*x^4 + 1344*x^5 + 20480*x^6 + 329472*x^7 + ...
A(A(x))^3 = x^3 + 12*x^4 + 168*x^5 + 2560*x^6 + 41184*x^7 + 688128*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,V=[1]); for(i=1,n, V = concat(V,0); A = x*Ser(V);
    V[#V] = polcoeff( x - subst(A,x, sqrt(A^2 - 8*A^3)), #V)/2 );V[n]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( sqrt(A(x)^2 - 8*A(x)^3) ).
(2) x^2 = A(A(x))^2 - 8*A(A(x))^3, where 2*A(A(x/2)) is the g.f. of A078531.
(3) [x^(n+1)] A(A(x)) = 8^n * binomial((3*n-1)/2, n)/(n+1) = 2^n*A078531(n) for n >= 0.
Previous Showing 21-22 of 22 results.