cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A270795 The prime/nonprime compound sequence BAB.

Original entry on oeis.org

4, 12, 21, 28, 34, 42, 52, 60, 65, 74, 84, 95, 98, 106, 119, 128, 133, 135, 141, 147, 170, 177, 180, 192, 195, 209, 214, 220, 231, 246, 250, 253, 284, 288, 290, 295, 301, 316, 323, 329, 336, 339, 351, 365, 382, 387, 390, 394, 417, 429, 432, 445, 462, 470, 474, 481, 490, 505, 516, 518, 532, 538, 543, 550, 559, 566
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A175250 Nonprimes (A018252) with noncomposite (A008578) subscripts.

Original entry on oeis.org

1, 4, 6, 9, 12, 18, 21, 26, 28, 34, 42, 45, 52, 57, 60, 65, 74, 81, 84, 91, 95, 98, 106, 112, 119, 128, 133, 135, 141, 143
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

a(n) = nonprime(noncomposite(n)) = A018252(A008578(n)). a(n) U A102615(n+1) = A018252(n) for n >= 1. a(1) = 1, a(n) = A078782(n-1) = nonprimes (A008578) with prime (A000040) subscripts for n >=2.

Examples

			a(5) = 12 because a(5) = b(q(5)) = b(7) = 12, q = noncomposite, b = nonprime.
		

A144574 Largest prime < nonprime(prime(n)).

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 23, 31, 41, 43, 47, 53, 59, 61, 73, 79, 83, 89, 89, 97, 103, 109, 113, 127, 131, 131, 139, 139, 139, 163, 167, 173, 179, 191, 193, 199, 199, 211, 211, 227, 229, 241, 241, 241, 251, 263, 283, 283, 283, 293, 293, 293, 313, 317, 317, 331
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 06 2009

Keywords

Comments

The n-th nonprime with a prime subscript is A078782(n) = A018252(A000040(n)).

Examples

			a(1)=3 because nonprime(prime(1)) = nonprime(2) = 4 and the largest prime < 4 is 3;
a(2)=5 because nonprime(prime(2)) = nonprime(3) = 6 and the largest prime < 6 is 5.
		

Crossrefs

Programs

  • Maple
    A018252 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc:
    A078782 := proc(n) A018252(ithprime(n)) ; end proc:
    A144574 := proc(n) prevprime(A078782(n)) ; end proc: seq(A144574(n),n=1..120) ;
    # R. J. Mathar, May 01 2010

Extensions

Corrected (19 inserted) by R. J. Mathar, May 01 2010
Edited by Jon E. Schoenfield, Feb 07 2019

A161186 In the sequence of nonprime numbers, an element k's position is either prime or nonprime. If k's position is prime, f(k)= the k-th nonprime-positioned element, else f(k) is the k-th prime-positioned element. Iterated application of x-> f(x) gives disjoint sequences generated by the first elements, which form the current sequence.

Original entry on oeis.org

1, 6, 8, 9, 10, 12, 15, 18, 20, 21, 22, 25, 26, 27, 32, 33, 34, 35, 36, 38, 40, 44, 45, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 64, 66, 69, 70, 72, 75, 76, 77, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 98, 99, 100, 102, 104, 108, 110, 112, 114, 115, 116, 117, 120
Offset: 1

Views

Author

Daniel Tisdale, Jun 05 2009, Jun 10 2009

Keywords

Examples

			The nonprime numbers are: [1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20].
Those with prime positions are: [4, 6, 9, 12, 18].
Those with nonprime positions are: [1, 8, 10, 14, 15, 16, 20].
So we have {f(1)} = {1,4,14,60,...}, {f(6)} = {6,16,74,...}, {f(8)} ={8,28,56,...}; so the current sequence are the first elements, {1,6,8,...etc}.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(va = select(x->(! isprime(x)), [1..nn])); my(vap = vector(primepi(#va), k, va[prime(k)])); my(vanp = Vec(setminus(va, vap))); my(vused = vector(#va), ok=1, last=0, list=List(), new, ok2); while(ok, last++; while ((last <= #vused) && vused[last], last++); if (last > #vused, break); new = va[last]; listput(list, new); ok2 = 1; my(list1 = List()); listput(list1, new); while(ok2, pos = setsearch(va, new); if (!pos, ok2=0, vused[pos] = 1; if (isprime(pos), if (new <= #vanp, new = vanp[new], ok2=0), if (new <= #vap, new = vap[new], ok2=0);); listput(list1, new);););); Vec(list);} \\ Michel Marcus, Aug 18 2022

Extensions

More terms from Michel Marcus, Aug 18 2022
Previous Showing 11-14 of 14 results.