cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A079245 Number of isomorphism classes of associative commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 3, 12, 58
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079209.

Crossrefs

A079241 Number of isomorphism classes of associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 0, 10, 127, 1588, 26487, 1610379, 3683808608
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079207.

Formula

A079231(n) + A079233(n) + A079235(n) + A079237(n) + A079196(n) + a(n) + A079243(n) + A079245(n) + A063524(n) = A002489(n).
a(n) = A027851(n) - A001426(n) - A079243(n). - Andrew Howroyd, Jan 27 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 27 2022

A079243 Number of isomorphism classes of associative non-commutative non-anti-associative anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2, 2, 3, 2, 4, 2, 4
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

The only closed binary operations that are both commutative and anti-commutative are those on sets of size <= 1. The significance of non-commutative (and non-anti-associative) in the name is that it excludes this possibility. Otherwise, the first two terms would be 1. - Andrew Howroyd, Jan 26 2022

Examples

			From _Andrew Howroyd_, Jan 26 2022: (Start)
The a(6) = 4 operations are the two shown below and their converses.
    | 1 2 3 4 5 6         | 1 2 3 4 5 6
  --+------------       --+------------
  1 | 1 2 3 4 5 6       1 | 1 2 3 1 2 3
  2 | 1 2 3 4 5 6       2 | 1 2 3 1 2 3
  3 | 1 2 3 4 5 6       3 | 1 2 3 1 2 3
  4 | 1 2 3 4 5 6       4 | 4 5 6 4 5 6
  5 | 1 2 3 4 5 6       5 | 4 5 6 4 5 6
  6 | 1 2 3 4 5 6       6 | 4 5 6 4 5 6
(End)
		

Crossrefs

Row sums of A079208.

Formula

A079231(n) + A079233(n) + A079235(n) + A079237(n) + A079196(n) + A079241(n) + a(n) + A079245(n) + A063524(n) = A002489(n).
Conjecture: a(n) = A000005(n) for n > 1. - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) from Andrew Howroyd, Jan 26 2022

A118100 Number of commutative semigroups of order <= n.

Original entry on oeis.org

1, 2, 5, 17, 75, 400, 2543, 19834, 241639, 11787482, 3530717819
Offset: 0

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

A001426(n) is the number of commutative semigroups of order n. A001426(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n). 2, 5, 17, 2543 and 241639 are primes.

Examples

			a(8) = 1 + 1 + 3 + 12 + 58 + 325 + 2143 + 17291 + 221805 = 241639.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001426(i).

Extensions

a(9)-a(10) added using the terms in A001426 by Miles Englezou, May 27 2025

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Previous Showing 11-15 of 15 results.