cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A079389 Where records occur in A079387.

Original entry on oeis.org

1, 2, 4, 8, 11, 78, 623, 661, 729, 812, 993, 1088, 1318, 4250, 7041, 7499
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079387.

Crossrefs

Programs

  • Mathematica
    A079387 = Cases[Import["https://oeis.org/A079387/b079387.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079387], i++,
      If[A079387[[i]] > l, l = A079387[[i]]; AppendTo[a, i]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

More terms from Lambert Herrgesell (zero815(AT)googlemail.com), Dec 06 2005

A080348 Costé prime expansion of Catalan's constant.

Original entry on oeis.org

2, 2, 2, 5, 2, 5, 3, 7, 11, 5, 11, 7, 23, 13, 11, 3, 5, 2, 7, 5, 3, 7, 5, 13, 43, 43, 29, 17, 5, 2, 19, 11, 5, 3, 7, 5, 5, 3, 7, 7, 11, 3, 3, 7, 11, 2, 13, 7, 19, 13, 11, 11, 5, 3, 3, 3, 7, 7, 11, 3, 3, 7, 13, 37, 17, 7, 3, 7, 5, 5, 5, 2, 11, 5, 5, 5, 5, 2, 5, 5, 37, 7, 157, 53, 1361, 131, 107
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Catalan);

A079382 Records in A079381.

Original entry on oeis.org

2, 7, 13, 19, 89, 131, 251, 4327, 4751, 38561
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079381.

Crossrefs

Programs

  • Mathematica
    A079381 = Cases[Import["https://oeis.org/A079381/b079381.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079381], i++,
      If[A079381[[i]] > l, l = A079381[[i]]; AppendTo[a, l]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

a(8)-a(10) from Robert Price, Mar 15 2020

A079383 Where records occur in A079381.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 23, 107, 658, 1675
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079381.

Crossrefs

Programs

  • Mathematica
    A079381 = Cases[Import["https://oeis.org/A079381/b079381.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079381], i++,
      If[A079381[[i]] > l, l = A079381[[i]]; AppendTo[a, i]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

a(8)-a(10) from Robert Price, Mar 15 2020

A079388 Records in A079387.

Original entry on oeis.org

2, 3, 7, 37, 149, 853, 1361, 1597, 1861, 4391, 4919, 10487, 12037, 15991, 27581, 334421
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079387.

Crossrefs

Programs

  • Mathematica
    A079387 = Cases[Import["https://oeis.org/A079387/b079387.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079387], i++,
      If[A079387[[i]] > l, l = A079387[[i]]; AppendTo[a, l]]];
    a (* Robert Price, Mar 15 2020 *)
  • PARI
    \p20000 P(x)=local(y); y=ceil(1/x);if(isprime(y),y,nextprime(y)); F(x)=local(y,i,t1);y=x; t1=vector(10000);for(i=1,10000,p=P(y);t1[i]=p;y=p*y-1);t1 v=F(sqrt(3)-1); m=0;for(i=1,length(v),if(v[i]>m,print1(v[i],",");m=v[i])) (Herrgesell)

Extensions

More terms from Lambert Herrgesell (zero815(AT)googlemail.com), Dec 06 2005
Corrected by T. D. Noe, Nov 15 2006

A080349 Costé prime expansion of Pi-e.

Original entry on oeis.org

3, 5, 3, 23, 11, 3, 7, 5, 3, 37, 13, 11, 2, 17, 11, 3, 17, 11, 2, 29, 5, 29, 11, 3, 3, 5, 5, 479, 89, 23, 17, 11, 3, 5, 3, 7, 5, 5, 7, 5, 2, 11, 5, 3, 7, 5, 2, 5, 5, 29, 5, 5, 7, 11, 5, 7, 7, 7, 17, 5, 7, 5, 13, 23, 11, 3, 29, 23, 7, 3, 11, 3, 5, 19, 53, 19, 23, 29, 67, 1409, 347, 37, 13, 13
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Pi-exp(1));

A080350 Costé prime expansion of 1/Pi.

Original entry on oeis.org

5, 2, 7, 5, 3, 5, 11, 3, 7, 5, 2, 7, 79, 67, 19, 29, 59, 11, 5, 11, 3, 47, 31, 607, 419, 47, 19, 43, 37, 7, 3, 29, 7, 7, 5, 5, 157, 53, 89, 17, 5, 37, 7, 11, 3, 17, 5, 3, 3, 29, 127, 19, 11, 11, 5, 3, 13, 41, 13, 11, 3, 11, 11, 5, 11, 3, 3, 5, 2, 5, 2, 5, 3, 7, 3, 17, 5, 11, 3, 11, 17, 5, 3, 5
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(1/Pi);

A080351 Costé prime expansion of 1/exp(1).

Original entry on oeis.org

3, 11, 11, 2, 13, 23, 17, 23, 7, 7, 5, 3, 13, 11, 5, 3, 23, 17, 7, 5, 5, 3, 5, 3, 5, 5, 3, 5, 2, 149, 19, 103, 577, 389, 1039, 223, 29, 11, 3, 3, 7, 5, 2, 7, 3, 191, 47, 13, 11, 7, 5, 3, 7, 3, 7, 13, 29, 11, 3, 3, 3, 3, 5, 5, 2, 5, 2, 5, 3, 79, 137, 173, 59, 157, 29, 17, 7, 13, 79, 281
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(1/exp(1));
Previous Showing 11-18 of 18 results.