A179914
Primes with six embedded primes.
Original entry on oeis.org
1733, 1973, 2113, 2137, 2237, 2311, 2347, 2371, 2713, 2719, 2837, 2953, 2971, 3373, 3673, 3719, 3733, 3739, 4337, 4373, 4397, 4673, 5231, 5233, 5347, 5479, 6131, 6197, 6317, 6733, 6737, 7193, 7331, 7523, 8237, 8317, 8537, 9719, 10313, 10337, 10937
Offset: 1
-
import Data.List (elemIndices)
a179914 n = a179914_list !! (n-1)
a179914_list = map (a000040 . (+ 1)) $ elemIndices 6 a079066_list
-- Reinhard Zumkeller, Jul 19 2011
-
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1330, f@# == 7 &]
A179915
Primes with seven embedded primes.
Original entry on oeis.org
1373, 3137, 3797, 5237, 6173, 11173, 11311, 11353, 11719, 11731, 11971, 12113, 12239, 12347, 12377, 12953, 12973, 13127, 13177, 13217, 13537, 13597, 13679, 13709, 13711, 13723, 13729, 13751, 13757, 13759, 13799, 13967, 13997, 15137
Offset: 1
-
import Data.List (elemIndices)
a179915 n = a179915_list !! (n-1)
a179915_list = map (a000040 . (+ 1)) $ elemIndices 7 a079066_list
-- Reinhard Zumkeller, Jul 19 2011
-
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1770, f@# == 8 &]
A179916
Primes with eight embedded primes.
Original entry on oeis.org
12373, 12379, 12713, 13171, 15233, 17333, 17359, 17971, 19373, 19379, 21139, 21319, 22973, 23167, 23197, 23311, 23473, 23537, 23593, 23671, 23677, 23761, 23773, 23977, 24113, 24137, 24179, 24197, 24317, 24337, 24379, 24733, 25237
Offset: 1
-
import Data.List (elemIndices)
a179916 n = a179916_list !! (n-1)
a179916_list = map (a000040 . (+ 1)) $ elemIndices 8 a079066_list
-- Reinhard Zumkeller, Jul 19 2011
-
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 2790, f@# == 9 &]
A179917
Primes with nine embedded primes.
Original entry on oeis.org
11317, 19739, 19973, 21317, 21379, 22397, 22937, 23117, 23173, 23371, 23971, 24373, 26317, 27197, 29173, 29537, 32719, 33739, 33797, 37397, 39719, 51137, 51973, 52313, 53173, 53479, 53719, 57173, 57193, 61379, 61979, 63179, 66173
Offset: 1
-
import Data.List (elemIndices)
a179917 n = a179917_list !! (n-1)
a179917_list = map (a000040 . (+ 1)) $ elemIndices 9 a079066_list
-- Reinhard Zumkeller, Jul 19 2011
-
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 6610, f@# == 10 &]
A179918
Primes with ten embedded primes.
Original entry on oeis.org
23719, 31379, 52379, 111373, 111731, 111733, 112397, 113117, 113167, 113723, 113759, 113761, 115237, 117191, 117431, 121139, 122971, 123113, 123373, 123479, 123731, 124337, 126173, 126317, 127139, 127733, 127739, 127973, 129733, 131171
Offset: 1
-
import Data.List (elemIndices)
a179918 n = a179918_list !! (n-1)
a179918_list = map (a000040 . (+ 1)) $ elemIndices 10 a079066_list
-- Reinhard Zumkeller, Jul 19 2011
-
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 12280, f@# == 11 &]
A217104
Minimal number (in decimal representation) with n nonprime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 5, 4, 19, 17, 16, 75, 67, 66, 64, 269, 263, 266, 257, 256, 1053, 1031, 1035, 1029, 1026, 1024, 4125, 4119, 4123, 4107, 4099, 4098, 4096, 16479, 16427, 16431, 16407, 16395, 16391, 16386, 16384, 65709, 65629, 65579, 65581, 65559, 65543, 65539, 65537, 65536
Offset: 0
a(0) = 2, since 2 = 2_4 is the least number with zero nonprime substrings in base-4 representation.
a(1) = 1, since 1 = 1_4 is the least number with 1 nonprime substring in base-4 representation.
a(2) = 5, since 5 = 11_4 is the least number with 2 nonprime substrings in base-4 representation (these are 2-times 1).
a(3) = 4, since 4 = 10_4 is the least number with 3 nonprime substrings in base-4 representation (these are 0, 1 and 10).
a(4) = 19, since 19 = 103_4 is the least number with 4 nonprime substrings in base-4 representation, these are 0, 1, 10, and 03 (remember, that substrings with leading zeros are considered to be nonprime).
a(7) = 75, since 75 = 1023_4 is the least number with 7 nonprime substrings in base-4 representation, these are 0, 1, 10, 02, 023, 102 and 1023 (remember, that substrings with leading zeros are considered to be nonprime: 2_4 = 2, 3_4 = 3 and 23_4 = 11 are the only base-4 prime substrings of 75).
A217105
Minimal number (in decimal representation) with n nonprime substrings in base-5 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 5, 6, 27, 25, 34, 127, 128, 125, 170, 636, 632, 627, 625, 850, 3162, 3137, 3132, 3127, 3125, 4250, 15686, 15661, 15638, 15632, 15627, 15625, 21250, 78192, 78163, 78162, 78137, 78132, 78127, 78125, 106250, 390818, 390692, 390686, 390662, 390638, 390632
Offset: 0
a(0) = 2, since 2 = 2_5 is the least number with zero nonprime substrings in base-4 representation.
a(1) = 1, since 1 = 1_5 is the least number with 1 nonprime substring in base-5 representation.
a(2) = 5, since 5 = 10_5 is the least number with 2 nonprime substrings in base-5 representation (0 and 1).
a(3) = 6, since 6 = 11_5 is the least number with 3 nonprime substrings in base-5 representation (2-times 1 and 11).
a(4) = 27, since 27 = 102_5 is the least number with 4 nonprime substrings in base-5 representation, these are 0, 1, 02, and 102 (remember, that substrings with leading zeros are considered to be nonprime).
a(6) = 34, since 34 = 114_5 is the least number with 6 nonprime substrings in base-5 representation, these are 1, 1, 4, 11, 14, and 114.
A217106
Minimal number (in decimal representation) with n nonprime substrings in base-6 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 7, 6, 41, 37, 36, 223, 224, 218, 216, 1319, 1307, 1301, 1297, 1296, 7829, 7793, 7787, 7783, 7778, 7776, 46703, 46709, 46679, 46673, 46663, 46658, 46656, 280205, 280075, 279983, 279979, 279949, 279941, 279938, 279936, 1679879, 1679807, 1679699, 1679669
Offset: 0
a(0) = 2, since 2 = 2_6 is the least number with zero nonprime substrings in base-6 representation.
a(1) = 1, since 1 = 1_6 is the least number with 1 nonprime substring in base-6 representation.
a(2) = 7, since 7 = 11_6 is the least number with 2 nonprime substrings in base-6 representation (1 and 1).
a(3) = 6, since 6 = 10_6 is the least number with 3 nonprime substrings in base-6 representation (0, 1 and 10).
a(4) = 41, since 41 = 105_6 is the least number with 4 nonprime substrings in base-6 representation, these are 0, 1, 10, and 05 (remember, that substrings with leading zeros are considered to be nonprime).
A217107
Minimal number (in decimal representation) with n nonprime substrings in base-7 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 7, 8, 51, 49, 57, 353, 345, 343, 400, 2417, 2411, 2403, 2401, 9604, 16880, 16823, 16829, 16809, 16807, 67228, 117763, 117721, 117666, 117659, 117651, 117649, 470596, 823709, 823664, 823615, 823560, 823553, 823545, 823543, 3294172, 5765310, 5765063
Offset: 0
a(0) = 2, since 2 = 2_7 is the least number with zero nonprime substrings in base-7 representation.
a(1) = 1, since 1 = 1_7 is the least number with 1 nonprime substring in base-7 representation.
a(2) = 7, since 7 = 10_7 is the least number with 2 nonprime substrings in base-7 representation (these are 0 and 1).
a(3) = 8, since 8 = 11_7 is the least number with 3 nonprime substrings in base-7 representation (1, 1 and 11).
a(4) = 51, since 51 = 102_7 is the least number with 4 nonprime substrings in base-7 representation, these are 0, 1, 02, and 102 (remember, that substrings with leading zeros are considered to be nonprime).
A217108
Minimal number (in decimal representation) with n nonprime substrings in base-8 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 10, 8, 67, 66, 64, 523, 525, 514, 512, 4127, 4115, 4099, 4098, 4096, 32797, 32799, 32779, 32771, 32770, 32768, 262237, 262239, 262173, 262163, 262147, 262146, 262144, 2097391, 2097259, 2097211, 2097181, 2097169, 2097163, 2097154, 2097152, 16777695
Offset: 0
a(0) = 2, since 2 = 2_8 is the least number with zero nonprime substrings in base-8 representation.
a(1) = 1, since 1 = 1_8 is the least number with 1 nonprime substring in base-8 representation.
a(2) = 10, since 10 = 12_8 is the least number with 2 nonprime substrings in base-8 representation (1 and 12).
a(3) = 8, since 8 = 10_8 is the least number with 3 nonprime substrings in base-8 representation (0, 1 and 10).
a(4) = 67, since 67 = 103_8 is the least number with 4 nonprime substrings in base-8 representation, these are 0, 1, 10, and 03 (remember, that substrings with leading zeros are considered to be nonprime).
Comments