cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A085463 Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1<=v4, v1<=v5, v2<=v4, v2<=v5 and v3<=v4.

Original entry on oeis.org

1, 12, 63, 219, 594, 1365, 2786, 5202, 9063, 14938, 23529, 35685, 52416, 74907, 104532, 142868, 191709, 253080, 329251, 422751, 536382, 673233, 836694, 1030470, 1258595, 1525446, 1835757, 2194633, 2607564, 3080439, 3619560, 4231656
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jul 01 2003

Keywords

Comments

Number of monotone n-weightings of a certain connected bipartite digraph. A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120: n in [1..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120, {n,1,25}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=1,25, print1(n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = n + 10*binomial(n, 2) + 30*binomial(n, 3) + 35*binomial(n, 4) + 14*binomial(n, 5).
a(n) = n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120.
G.f.: x*(1+6*x+6*x^2+x^3)/(1-x)^6. - Colin Barker, Apr 01 2012

A085464 Number of monotone n-weightings of complete bipartite digraph K(4,2).

Original entry on oeis.org

1, 19, 134, 586, 1919, 5173, 12124, 25572, 49677, 90343, 155650, 256334, 406315, 623273, 929272, 1351432, 1922649, 2682363, 3677374, 4962706, 6602519, 8671069, 11253716, 14447980, 18364645, 23128911, 28881594, 35780374, 44001091
Offset: 1

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jul 01 2003

Keywords

Comments

A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.

Crossrefs

Programs

  • Magma
    [(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1): n in [1..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1), {n,1,50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    a(n)=n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1)/30 \\ Charles R Greathouse IV, Jan 16 2013
    

Formula

a(n) = n + 17*binomial(n, 2) + 80*binomial(n, 3) + 160*binomial(n, 4) + 144*binomial(n, 5) + 48*binomial(n, 6).
a(n) = (1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1).
a(n) = Sum_{i=1..n} ((n+1-i)^4-(n-i)^4)*i^2.
a(n) = Sum_{i=1..n} ((n+1-i)^2-(n-i)^2)*i^4.
More generally, number of monotone n-weightings of complete bipartite digraph K(s, t) is Sum_{i=1..n} ((n+1-i)^s-(n-i)^s)*i^t = Sum_{i=1..n} ((n+1-i)^t-(n-i)^t)*i^s.
G.f.: x*(1+x)^2*(1+10*x+x^2)/(1-x)^7. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum (j=1..n, min(i,j)^4)). - Enrique Pérez Herrero, Jan 16 2013
Previous Showing 11-12 of 12 results.