cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A332982 Decimal expansion of Pi/exp(gamma).

Original entry on oeis.org

1, 7, 6, 3, 8, 7, 6, 9, 8, 8, 8, 6, 2, 0, 4, 5, 6, 9, 0, 6, 9, 2, 6, 6, 2, 1, 3, 4, 5, 4, 3, 3, 3, 9, 5, 3, 5, 0, 8, 6, 0, 2, 7, 2, 2, 8, 9, 6, 6, 7, 5, 0, 7, 0, 2, 3, 1, 3, 4, 3, 5, 3, 2, 1, 1, 2, 1, 0, 5, 7, 9, 1, 2, 5, 9, 0, 0, 7, 7, 7, 1, 7, 3, 2, 3, 9, 2, 0, 1, 8, 6, 3, 6, 7, 1, 8, 9, 4, 3, 8
Offset: 1

Views

Author

Spenser Talkington, Mar 05 2020

Keywords

Comments

Arises in the weak-coupling BCS model of superconductors, from the integral Integral_{0..a} tanh(x)/x dx that approaches log(4*exp(gamma)*a/Pi) as a becomes large.

Examples

			1.7638769888620456906926621345433395350860272289667507023134353211210579125900...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A001620 (Euler-Mascheroni constant), A073004 (exp(gamma)), A080130 (exp(-gamma)).

Programs

  • Mathematica
    RealDigits[Pi/E^(EulerGamma), 10, 100][[1]]
  • PARI
    Pi/exp(Euler) \\ Michel Marcus, Mar 28 2020

A359057 Decimal expansion of 1/(1 - e^(-gamma)).

Original entry on oeis.org

2, 2, 8, 0, 2, 9, 1, 0, 1, 6, 5, 1, 4, 3, 6, 0, 4, 2, 8, 2, 8, 6, 7, 4, 6, 8, 1, 2, 3, 2, 5, 1, 0, 9, 0, 1, 8, 1, 1, 0, 2, 8, 2, 4, 1, 3, 3, 2, 7, 4, 3, 8, 0, 5, 3, 4, 5, 0, 4, 1, 8, 7, 6, 6, 9, 0, 7, 6, 6, 2, 8, 0, 4, 4, 0, 1, 6, 1, 5, 6, 0, 6, 1, 1, 6, 2, 1, 8, 8, 6, 0, 4, 2, 3, 6, 0, 9, 1, 2, 8, 0, 5, 2, 2, 9
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2022

Keywords

Comments

This constant is mentioned by Andreas Weingartner.

Examples

			2.2802910165143604282867468123251090181102824133274380534504187669076628...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(1 - Exp[-EulerGamma]), 10, 120][[1]] (* Amiram Eldar, Dec 15 2022 *)
  • PARI
    1/(1-exp(-Euler)) \\ Michel Marcus, Dec 15 2022

Formula

Equals 1/A227242.
Equals 1/(1 - A080130).
Equals 1/(1 - A001113^(-A001620)).

Extensions

More terms from Alois P. Heinz, Dec 14 2022
Previous Showing 31-32 of 32 results.