A288487
Cuboids that fit in square rings from A288486 obtaining a fifth power.
Original entry on oeis.org
1, 8, 75, 400, 1445, 4056, 9583, 20000, 38025, 67240, 112211, 178608, 273325, 404600, 582135, 817216, 1122833, 1513800, 2006875, 2620880, 3376821, 4298008, 5410175, 6741600, 8323225, 10188776, 12374883, 14921200, 17870525, 21268920, 25165831, 29614208
Offset: 0
-
Table[(1 + n)*(1 + n^2)^2, {n, 0, 28}] (* or *) CoefficientList[Series[(1 + 2 x + 42 x^2 + 50 x^3 + 25 x^4)/(1 - x)^6, {x, 0, 28}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 75, 400, 1445, 4056}, 29]
-
Vec((1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6 + O(x^28))
A234566
1/a(n) is the area of the smallest triangle delimited by 3 lines each passing through at least 2 points of an n X n unitary spaced grid.
Original entry on oeis.org
4, 30, 770, 5148, 30566, 89900, 219960, 614460, 1146596, 2624076, 4299916, 8432732, 11016390, 22391148, 28183214
Offset: 2
For n=2, consider the 2 X 2 grid formed by the points with coordinates (0,0), (0,1), (1,0) and (1,1). The two diagonals and the line passing through (0,0) and (1,0) form a triangle whose area is 1/4 and since no smaller triangle can be formed in this way, a(2) = 4.
A335717
a(n) is the smallest dividend m of the Euclidean division m = d*n + r such that m/d = r/n.
Original entry on oeis.org
25, 100, 162, 676, 400, 2500, 1156, 2352, 1458, 14884, 2601, 28900, 5202, 6084, 8712, 84100, 9408, 131044, 10816, 22500, 22275, 280900, 19602, 79380, 36517, 60516, 40000, 708964, 31827, 925444, 67600, 46128, 80937, 62500, 55112, 1876900, 112651, 88752, 83232
Offset: 2
a(2) = 25 because 25 = 10*2 + 5 and 25/10 = 5/2. Furthermore, there is no Euclidean division with a dividend less than 25 such that m/d = r/2.
a(4) = 162 because 162 = 36*4 + 18 and 162/36 = 18/4. The other Euclidean division with the same property has a larger dividend : 289 = 68*4 + 17 and 289/68 = 17/4.
-
f:= proc(n) local m, r,k,d;
for k from n-1 to 1 by -1 do
r:= n^2+k;
m:= r^2/k;
if not m::integer then next fi;
d:= n*r/k;
if d::integer then return m fi;
od
end proc:
map(f, [$2..50]); # Robert Israel, Sep 16 2020
-
f[n_] := Module[{m, r, k, d}, For[k = n-1, k >= 1, k--, r = n^2+k; m = r^2/k; If[!IntegerQ[m], Continue]; d = n*r/k; If[IntegerQ[d], Return[m]]]];
Table[f[n], {n, 2, 50}] (* Jean-François Alcover, Jul 31 2024, after Robert Israel *)
-
a(n) = k=n; until(k==1, k--; r=k + n^2; d=n*r/k; m=r^2/k; if(floor(d)==d && floor(m)==m, return(m); break));
Original entry on oeis.org
1, 3, 10, 28, 66, 136, 253, 435, 703, 1081, 1596, 2278, 3160, 4278, 5671, 7381, 9453, 11935, 14878, 18336, 22366, 27028, 32385, 38503, 45451, 53301, 62128, 72010, 83028, 95266, 108811, 123753, 140185, 158203, 177906, 199396, 222778, 248160, 275653, 305371
Offset: 0
For n=0, a(0)=1*2/2=1. For n=2, a(2)=4*5/2=10.
Cf.
A000217 (triangular numbers),
A229183 (consecutive terms differences),
A082044 (related sequence for squares),
A027927 (related sequence for triangular numbers).
-
I:=[1,3,10,28,66]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jan 22 2016
-
S[n_] :=n*(n+1)/2; Table[S[S[n]+1], {n, 0, 50}]
Table[(n*(n+1)/2+1)(n*(n+1)/2+2)/2, {n, 0, 50}]
Table[(n^4+2*n^3+7*n^2+6*n+8)/8, {n, 0, 50}]
CoefficientList[Series[(1 - 2 x + 5 x^2 - 2 x^3 + x^4) / (1 - x)^5, {x, 0, 33}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 10, 28, 66}, 50] (* Vincenzo Librandi, Jan 22 2016 *)
-
for(n=0,50,print1((n^4+2*n^3+7*n^2+6*n+8)/8 ", "))
Comments