cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A272532 Single bit representation of the sum of two sinusoids with periods 2 and 2*sqrt(2).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Andres Cicuttin, May 02 2016

Keywords

Comments

Since the ratio of the two periods is irrational, the sequence is strictly non-periodic.
From the factorized expression of the corresponding real function of x : 2*cos(2Pi((2 - sqrt(2))/8)x)*sin(2Pi((2 + sqrt(2))/8)x), it is possible to see that the largest distance between consecutive zeros is not greater than the shortest semi-period, 4/(2 + sqrt(2)), that is smaller than 2, and from this it follows that there are no more than two consecutive 0's or 1's.

Crossrefs

Conjectured quasiperiodicity in A271591 and A272170. A083035.

Programs

  • Mathematica
    nmax=120 ; Table[If[Sin[2*Pi*(1/2)*n]+Sin[2*Pi*(1/(2*Sqrt[2]))*n]<0,0,1],{n,1,nmax}]

Formula

a(n) = floor( (1 + sin(2*Pi*(1/2)*n) + sin(2*Pi*(1/(2*Sqrt[2]))*n)) mod 2).

A176409 Multiples of 3 or 7.

Original entry on oeis.org

0, 3, 6, 7, 9, 12, 14, 15, 18, 21, 24, 27, 28, 30, 33, 35, 36, 39, 42, 45, 48, 49, 51, 54, 56, 57, 60, 63, 66, 69, 70, 72, 75, 77, 78, 81, 84, 87, 90, 91, 93, 96, 98, 99, 102, 105, 108, 111, 112, 114, 117, 119, 120, 123, 126, 129, 132, 133, 135, 138, 140, 141, 144, 147, 150, 153
Offset: 1

Views

Author

Zak Seidov, Dec 07 2010

Keywords

Comments

Therefore, this sequence also includes multiples of 21.
First differences: 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3 have period {3, 3, 1, 2, 3, 2, 1, 3, 3}.
In general, sequences of numbers divisible by primes p and q will be of the form a(n+p+q-1) = a(n)+p*q. - Gary Detlefs, Oct 07 2013

Crossrefs

Programs

  • Mathematica
    Union@Flatten@{Table[3n, {n, 70}], Table[7n, {n, 30}]}
    Select[ Range@ 153, Mod[#, 3] == 0 || Mod[#, 7] == 0 &]
  • PARI
    concat(0, Vec(x^2*(3 + 3*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6 + 3*x^7 + 3*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^70))) \\ Colin Barker, Mar 21 2020

Formula

a(n+9) = a(n) + 21.
a(n) = 21*floor((n-1)/9) + 2*((n-1) mod 9) + s(((n-1) mod 9)-1) + 1 - floor(((n-2) mod 9)/8), where s(n) = floor(n*sqrt(2)) - 2*floor(n/sqrt(2)). - Gary Detlefs, Oct 07 2013
a(n) = 7n/3 + O(1). - Charles R Greathouse IV, Feb 13 2017
From Colin Barker, Mar 21 2020: (Start)
G.f.: x^2*(3 + 3*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6 + 3*x^7 + 3*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
(End)

Extensions

0 inserted by Daniel Starodubtsev, Mar 21 2020

A335617 Let c(1) = c(2) = 0, c(3) = 1, and c(n + 3) = (c(n) - 2*c(n + 1) + c(n + 2))/n, then a(n) = ceiling (c(n)).

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Andres Cicuttin, Oct 11 2020

Keywords

Comments

Conjectured quasiperiodicity with autocorrelation function R(x) = 1/2 if x = 0, 1/4 if x > 0.
Some other proved or conjectured (or suspected) nonperiodic binary sequences where there are no more than two consecutive 0's or 1's include: A083035, A285305, A190843, A286059, A288213, A288551, A288473, A176405, A188321, A188398, A191162, A272170, A197879, A078588, A272532, A273129, A074937, A188297, A289128. Others?

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=(c[n-1]-2c[n-2]+c[n-3])/n;
    c[1] = 0; c[2] = 0; c[3] = 1;
    Table[Ceiling@c[j],{j,1,2^7}]
Previous Showing 11-13 of 13 results.