A163491
A fractal sequence (if we delete the first occurrence of n we get the sequence itself).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 2, 4, 3, 1, 5, 2, 4, 6, 3, 1, 7, 5, 2, 8, 4, 6, 9, 3, 1, 10, 7, 5, 11, 2, 8, 12, 4, 6, 13, 9, 3, 14, 1, 10, 15, 7, 5, 16, 11, 2, 17, 8, 12, 18, 4, 6, 19, 13, 9, 20, 3, 14, 21, 1, 10, 22, 15, 7, 23, 5, 16, 24, 11, 2, 25, 17, 8, 26, 12
Offset: 1
1,_,_,2,_,_,3,_,_,4,... -->
1,1,_,2,_,_,3,_,_,4,... -->
1,1,1,2,_,_,3,_,_,4,... -->
1,1,1,2,1,_,3,_,_,4,... -->
1,1,1,2,1,2,3,_,_,4,... -->
1,1,1,2,1,2,3,_,_,4,... -->
1,1,1,2,1,2,3,1,_,4,... -->
1,1,1,2,1,2,3,1,2,4,... -->
...
-
a[n_] := a[n] = If[Mod[n, 3] == 1, (n+2)/3, a[Floor[2n/3]]];
Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
-
a(n) = n+=2; my(q,r); while([q,r]=divrem(n,3); r, n-=q); q; \\ Kevin Ryde, Jan 16 2021
-
def a(n): return (n+2)//3 if n%3==1 else a(n*2//3)
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jan 16 2021
Original entry on oeis.org
1, 5, 17, 36, 80, 164, 300, 575, 1020, 1884, 3426, 5921, 10568, 18697, 31850, 55716, 94332, 163579, 282388, 474625, 814328, 1363979, 2328358, 3963781, 6609951, 11209355, 18969158, 31524783, 53186480, 88235842, 148471479, 249459365
Offset: 0
A083049
Antidiagonal sums of table A083047.
Original entry on oeis.org
1, 5, 15, 34, 68, 127, 225, 387, 652, 1084, 1787, 2927, 4775, 7769, 12616, 20462, 33160, 53709, 86962, 140769, 227834, 368711, 596658, 965488, 1562270, 2527887, 4090292, 6618319, 10708756, 17327225, 28036136, 45363522, 73399824, 118763517
Offset: 0
Original entry on oeis.org
1, 6, 15, 33, 60, 107, 176, 283, 463, 732, 1156, 1773, 2702, 4170, 6333, 9611, 14365, 21842, 32281, 48041, 71690, 106136, 158196, 232380, 340846, 504318, 740949, 1089909, 1590748, 2348540, 3411262, 4978297, 7278002, 10600284, 15494846
Offset: 0
A083053
Antidiagonal sums of table A083050.
Original entry on oeis.org
1, 6, 16, 35, 66, 114, 185, 290, 443, 661, 976, 1425, 2064, 2972, 4259, 6083, 8667, 12327, 17506, 24834, 35203, 49869, 70615, 99959, 141462, 200159, 283173, 400577, 566616, 801435, 1133522, 1603168, 2267350, 3206653, 4535033, 6413648, 9070416
Offset: 0
A191656
Dispersion of (2,4,5,7,8,10,...), by antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 11, 13, 16, 14, 12, 17, 20, 25, 22, 19, 15, 26, 31, 38, 34, 29, 23, 18, 40, 47, 58, 52, 44, 35, 28, 21, 61, 71, 88, 79, 67, 53, 43, 32, 24, 92, 107, 133, 119, 101, 80, 65, 49, 37, 27, 139, 161, 200, 179, 152, 121, 98, 74, 56
Offset: 1
Northwest corner:
1...2....4....7....11
3...5....8....13...20
6...10...16...25...38
9...14...22...34...52
12..19...29...44...67
-
(* Program generates the dispersion array T of the increasing sequence f[n] *)
r = 40; r1 = 12; c = 40; c1 = 12;
a = 2; b = 4; m[n_] := If[Mod[n, 2] == 0, 1, 0];
f[n_] := a*m[n + 1] + b*m[n] + 3*Floor[(n - 1)/2]
Table[f[n], {n, 1, 30}] (* A001651: (2+5k,4+5k, k>=0) *)
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]];
TableForm[Table[t[i, j], {i,1,10}, {j,1,10}]] (* A191656 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191656 sequence *)
Original entry on oeis.org
1, 5, 25, 90, 247, 766, 2258, 5860, 16526, 45639, 124043, 313327, 837221, 2216256, 5545541, 14524810, 37810204, 97907017, 242993558, 625252309, 1602714963, 3962518559, 10109705767, 25718726896, 63402237401, 160711911464
Offset: 0
A083091
Antidiagonal sums of table A083087.
Original entry on oeis.org
1, 5, 17, 49, 128, 321, 790, 1924, 4664, 11282, 27262, 65843, 158988, 383863, 926761, 2237435, 5401685, 13040863, 31483472, 76007871, 183499282, 443006506, 1069512368, 2582031320, 6233575089, 15049181582, 36331938341, 87713058356
Offset: 0
Comments