A277833
Number of '3' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
Original entry on oeis.org
0, 0, 1, 23, 349, 4721, 59553, 718985, 8424417, 96589849, 1089355281, 12128120713, 133626886145, 1459725651582, 15831824417065, 170663923183008, 1830096021953551, 19535528120770094, 207700960220046637, 2200466392323923180, 23239231824473799723
Offset: 0
For n=2 there is only one digit '3' in the sequence 0, 1, 2, *3*, 4, ..., 12.
For n=3 there are 12 + 10 = 22 more digits '3' in { 13, 23, 30, ..., 39, 43, 53, ..., 123 }, where 33 accounts for two '3's.
-
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==3,digits(k)))))
-
A277833(n,m=3)=if(n>12, error("not yet implemented"), n>m, A277833(n,m+1)+(m+2)*10^(n-m-1), (9*n-11)*(10^n+1)\729+2-(m>n)) \\ M. F. Hasler, Nov 02 2016, edited Dec 29 2020
A277835
Number of '5' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
Original entry on oeis.org
0, 0, 1, 22, 343, 4665, 58993, 713385, 8368417, 96029849, 1083755281, 12072120713, 133066886145, 1454125651577, 15775824417009, 170103923182448, 1824496021947951, 19479528120714094, 207140960219486637, 2194866392318323180, 23183231824417799723
Offset: 0
For n = 2 there is only one digit '5' in the sequence 0, 1, 2, ..., 12.
For n = 3 there are 11 + 10 = 21 more digits '5' in { 15, 25, ..., 45, 50, ..., 59, 65, ..., 115 }, where 55 accounts for two '5's.
-
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==5,digits(k)))))
-
A277835(n,m=5)=if(n>m,A277835(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016
A277836
Number of '6' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
Original entry on oeis.org
0, 0, 1, 22, 343, 4664, 58986, 713315, 8367717, 96022849, 1083685281, 12071420713, 133059886145, 1454055651577, 15775124417009, 170096923182441, 1824426021947881, 19478828120713394, 207133960219479637, 2194796392318253180, 23182531824417099723
Offset: 0
For n=2 there is only one digit '6' in the sequence 0, 1, 2, ..., 12.
For n=3 there are 11 + 10 = 21 more digits '6' in { 16, 26, ..., 56, 60, ..., 69, 76, 86, ..., 116 }, where 66 accounts for two '6's.
-
T[int_Integer, {bndsLow_Integer, bndsUpp_Integer}] := Table[
Count[
Flatten[Table[
IntegerDigits[m],
{m, 1, Sum[
10^i - 1,
{i, n}
]/9
}
]],
int
],
{n, bndsLow, bndsUpp}
];
T[6, {0, 7}](* Robert P. P. McKone, Jan 01 2021 *)
-
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==6,digits(k)))))
-
A277836(n,m=6)=if(n>m,A277836(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016
A211869
a(n) = Sum_{j=1..n-1} j*(n-j)*b^(j-1) with b = floor(n^2/4)+1.
Original entry on oeis.org
0, 1, 8, 98, 1712, 58985, 2541896, 187337236, 15687030920, 2014736789165, 280434300560320, 55591630021883014, 11642487182670742552, 3294318202343411333713, 969986091740868071844464, 371055858906757952457992360
Offset: 1
For n=5, the four products are 1*4 = 4, 2*3 = 6, 3*2 = 6, 4*1 = 4, giving the base-7 concatenation 4664. In base 10, this is a(5) = 1712.
For a(6) we have that 1+floor(6^2/4) = 10 so there is no need of converting the concatenation to decimal. By definition the products are j*(n-j) for j in 1..5: 1*(6-1) = 5 = 5*(6-5), 2*(6-2) = 8 = 4*(6-2), 3*(6-3) = 9 so the result is a(6)=58985.
A277834
Number of '4' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
Original entry on oeis.org
0, 0, 1, 22, 344, 4671, 59053, 713985, 8374417, 96089849, 1084355281, 12078120713, 133126886145, 1454725651577, 15781824417015, 170163923182508, 1825096021948551, 19485528120720094, 207200960219546637, 2195466392318923180, 23189231824423799723
Offset: 0
For n=2 there is only one digit '4' in the sequence 0, 1, 2, ..., 12.
For n=3 there are 11 + 10 = 21 more digits '4' in { 14, 24, 34, 40, ..., 49, 54, ..., 114 }, where 44 accounts for two '4's.
-
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==4,digits(k)))))
-
A277834(n,m=4)=if(n>m,A277833(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n))
Comments