cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A035202 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Also number of divisors of n which end in 1 or 9 minus number of divisors of n which end in 3 or 7. E.g. a(98)=2-1=1 since divisors of 98 are: 1 and 49 counting +1 each; 2, 14 and 98 counting 0 each; and 7 counting -1. - Henry Bottomley, Jul 08 2003

Crossrefs

Programs

  • Maple
    a:= proc(n) local D,d; D:= map(`modp`,convert(numtheory:-divisors(n),list),10);
          numboccur(1,D) + numboccur(9,D) - numboccur(3,D) - numboccur(7,D);
    end proc:
    seq(a(n),n=1..1000); # Robert Israel, Sep 22 2014
  • Mathematica
    a[n_] := With[{d = Mod[Divisors[n], 10]}, Count[d, 1|9] - Count[d, 3|7]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 15 2023 *)
    a[n_] := DivisorSum[n, KroneckerSymbol[20, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 20); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(20, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(20, d).
Multiplicative with a(p^e) = 1 if Kronecker(20, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(20, p) = -1 (p is in A003631 \ {2}), and a(p^e) = e+1 if Kronecker(20, p) = 1 (p is in A045468).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(phi)/sqrt(5) = 0.645613411446..., where phi is the golden ratio (A001622). (End)

Extensions

More terms from Henry Bottomley, Jul 08 2003
Previous Showing 11-11 of 11 results.