cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A176486 Numbers n such that semiprime(n)/prime(k)=prime and semiprime(n+1)/prime(k+1)=prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 21, 29, 35, 36, 39, 41, 42, 45, 52, 58, 59, 62, 71, 73, 87, 91, 96, 97, 104, 116, 120, 127, 137, 141, 142, 156, 168, 169, 170, 178, 179, 181, 185, 188, 204, 211, 227, 245, 246, 249, 250, 254, 255, 261, 263, 279, 281, 285, 290, 297, 305
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 18 2010

Keywords

Comments

Indices n such that the (n+1)st semiprime has a prime factor which is the next prime after one of the prime factors of the n-th semiprime. - R. J. Mathar, Apr 20 2010

Examples

			a(1)=1 because semiprime(1)/prime(1)=2 and semiprime(2)/prime(2)=2;
a(2)=2 because semiprime(2)/prime(1)=3 and semiprime(3)/prime(2)=3;
a(3)=3 because semiprime(3)/prime(2)=3 and semiprime(4)/prime(3)=2.
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Apr 20 2010: (Start)
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176486 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do spl := A084126(a) ; sph := A084127(a) ; sp2l := A084126(a+1) ; sp2h := A084127(a+1) ; if sp2l = nextprime(spl) or sp2h = nextprime(spl) or sp2l = nextprime(sph) or sp2h = nextprime(sph) then return a; end if; end do: end if; end proc:
    seq(A176486(n),n=1..80) ; (End)
  • Mathematica
    sppQ[{a_,b_}]:=Module[{t=NextPrime[Transpose[FactorInteger[a]][[1]]],c,d}, c=t[[1]];d=If[Length[t]>1,t[[2]],t[[1]]];Divisible[b,c]|| Divisible[ b,d]]; Flatten[ Position[Partition[Select[Range[1500],PrimeOmega[#] == 2&],2,1],?sppQ]] (* _Harvey P. Dale, Mar 16 2015 *)

Extensions

Corrected (59, 137, 142 inserted, 147 removed) and extended by R. J. Mathar, Apr 20 2010

A321788 Product of semiprime factors using lunar arithmetic.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 11, 5, 12, 11, 12, 5, 12, 13, 22, 7, 13, 11, 13, 22, 21, 13, 23, 22, 11, 21, 15, 22, 23, 13, 31, 22, 15, 22, 33, 23, 22, 17, 111, 21, 31, 33, 17, 22, 33, 21, 111, 25, 22, 31, 22, 33, 23, 22, 113, 33, 22, 31, 35, 111, 22, 33, 101, 27, 41, 102, 111, 31, 102, 43, 31, 102, 33, 113, 112, 45
Offset: 1

Views

Author

G. L. Honaker, Jr., Nov 18 2018

Keywords

Examples

			a(16)=22 because the 16th semiprime is 46 = 2*23. In lunar arithmetic the product becomes 22.
		

Crossrefs

Programs

  • Mathematica
    ladd[x_, y_] := FromDigits[MapThread[Max, IntegerDigits[#, 10, Max@ IntegerLength [{x, y}]] & /@ {x, y}]]; lmult[x_, y_] := Fold[ladd, 0, Table[10^i, {i, IntegerLength[y] - 1, 0, -1}]*FromDigits /@ Transpose@Partition[Min[##] & @@@ Tuples[IntegerDigits[{x, y}]], IntegerLength[y]]]; s={}; Do[If[PrimeOmega[n]==2, f=FactorInteger[n]; x=f[[1,1]]; y=n/x; m=lmult[x,y]; AppendTo[s, m]],{n,1,300}]; s (* Amiram Eldar, Nov 19 2018 after Davin Park at A087062 *)

Formula

a(n) = A087062(A084126(n), A084127(n)). - Michel Marcus, Nov 20 2018

A339410 If the n-th semiprime is p*q with p<=q primes, a(n) is the area of the triangle with vertices (1,p), (p,q) and (q,p*q).

Original entry on oeis.org

1, 1, 6, 2, 9, 8, 6, 35, 40, 54, 10, 104, 54, 135, 24, 209, 126, 64, 70, 90, 350, 405, 72, 154, 594, 190, 740, 64, 819, 280, 216, 330, 989, 54, 1274, 504, 22, 1595, 256, 550, 1710, 640, 714, 270, 2079, 874, 2345, 648, 56, 2484, 90, 2925, 1144, 286, 3239, 936, 1450, 3740, 1560, 216, 832, 4464
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 03 2020

Keywords

Examples

			For n = 5 the 5th semiprime is 14=2*7, and the area of the triangle with vertices (1,2), (2,7) and (7,14) is a(5)=9.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for semiprimes <= N
    SP:= select(t -> numtheory:-bigomega(t)=2, [$4..N]):
    f:= proc(n) local p,q;
      p,q:= (min,max)(numtheory:-factorset(n));
      (q-1)*abs(p^2-q)/2
    end proc:
    map(f, SP);
  • Mathematica
    ar[{a_,b_}]:=Abs[Det[{{1,a,b},{a,b,a b},{1,1,1}}]]/2; ar/@(If[Length[#]==1,Flatten[ {#,#}],#]&/@(FactorInteger[#][[;;,1]]&/@Select[Range[200],PrimeOmega[ #] == 2&])) (* Harvey P. Dale, Mar 05 2023 *)

Formula

a(n) = (q-1)*|p^2-q|/2 where p = A084126(n) and q = A084127(n).

A175711 Primes p such that p-th semiprime=r*k and r>=p>=k.

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 41, 43, 47, 53, 59, 67, 73, 97, 107, 109, 113, 137, 149, 151, 167, 179, 191, 193, 211, 227, 229, 233, 241, 263, 269, 277, 281, 307, 311, 317, 359, 373, 379, 383, 389, 449, 457, 487, 491, 499, 521, 563, 571, 577, 587, 593, 607, 631, 661, 677
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2010

Keywords

Comments

a(1)=2 because 2nd semiprime=3*2 and 3>2=2, a(2)=3 because 3rd semiprime=3*3 and 3=3=3, a(3)=5 because 5th semiprime=7*2 and 7>5>2.

Crossrefs

A176550 Numbers k such that (k-th odd semiprime)/(j-th prime) is prime and ((k+1)-th odd semiprime)/((j+1)-th prime) is prime for some j.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 18, 20, 21, 22, 24, 29, 34, 35, 42, 43, 57, 61, 74, 79, 81, 95, 101, 102, 111, 112, 118, 120, 123, 128, 136, 151, 153, 154, 163, 166, 167, 170, 173, 177, 190, 194, 195, 198, 199, 203, 205, 208, 212, 213, 239, 242, 245, 263, 267, 271, 278, 283
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 20 2010

Keywords

Crossrefs

Programs

  • Maple
    A046315 := proc(n) option remember; if n = 1 then 9; else for a from procname(n-1)+2 by 2 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
    isA176550 := proc(n) os := A046315(n) ; p := A020639(os) ; q := os/p ; ( A046315(n+1) mod nextprime(p) ) = 0 or (A046315(n+1) mod nextprime(q) = 0 ) ; end proc:
    for n from 1 to 300 do if isA176550(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 30 2010

Extensions

Corrected (39 removed, 43 inserted) and extended by R. J. Mathar, May 30 2010

A177193 The twin primes p such that m and k are also twin primes where m*k=semiprime(p).

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 31, 43, 59, 61, 71, 101, 103, 139, 179, 311, 313, 347, 349, 421, 463, 523, 569, 571, 599, 601, 617, 659, 823, 1019, 1021, 1031, 1061, 1093, 1153, 1319, 1321, 1429, 1619, 1667, 1697, 1721, 1787, 1789
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 04 2010

Keywords

Examples

			a(1)=3 because 3*3=semiprime(3) and 3=twin prime, a(2)=7 because 3*7=semiprime(7) and 3,7 are twin primes.
		

Crossrefs

Extensions

Entries checked and sequence extended beyond 139 - R. J. Mathar, May 06 2010
Previous Showing 31-36 of 36 results.