cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A374487 Expansion of 1/(1 - 2*x - 7*x^2)^(3/2).

Original entry on oeis.org

1, 3, 18, 70, 315, 1281, 5348, 21708, 88245, 355135, 1425270, 5692050, 22666735, 89986365, 356400840, 1408459928, 5555679849, 21877337979, 86020384730, 337769595870, 1324677499299, 5189411915897, 20308936981932, 79406140870500, 310206869770525, 1210898719869111
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/(1 - (7*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));

Formula

a(0) = 1, a(1) = 3; a(n) = ((2*n+1)*a(n-1) + 7*(n+1)*a(n-2))/n.
a(n) = binomial(n+2,2) * A025235(n).
From Seiichi Manyama, Aug 20 2025: (Start)
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 2^k * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (1/2)^k * (7/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k). (End)
a(n) ~ sqrt(n) * (1 + 2*sqrt(2))^(n + 3/2) / (2^(11/4) * sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025

A381482 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)^2 * binomial(n-k,k) * 2^k.

Original entry on oeis.org

1, 1, 9, 37, 241, 1401, 8961, 57429, 377217, 2509201, 16876729, 114600069, 783903121, 5397915433, 37372017489, 259998843477, 1816376953857, 12736545070113, 89602978644969, 632223913939557, 4472680961409201, 31717890254271321, 225416254500886689, 1605197563027768917
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 22 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - 2*x^2*y*z).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Binomial[n - k, k] 2^k, {k, 0, Floor[n/2]}], {n, 0, 23}]
    Table[HypergeometricPFQ[{1/2 - n/2, -n, -n/2}, {1, 1}, -8], {n, 0, 23}]

Formula

a(n) = hypergeom( [1/2 - n/2, -n, -n/2], [1, 1], -8).
a(n) ~ sqrt(7/12 + sqrt(89/38)*cosh(arccosh((8567*sqrt(19/178))/1424)/3)/3) * ((1/3 + 8*sqrt(7)*(cosh(arccosh(1261/(448*sqrt(7)))/3)/3))^n / Pi) / n. - Vaclav Kotesovec, Apr 23 2025
Previous Showing 11-12 of 12 results.