cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A299864 a(n) = (-1)^n*hypergeom([-n, n - 1/2], [1], 4).

Original entry on oeis.org

1, 1, 19, 239, 3011, 38435, 496365, 6470385, 84975315, 1122708899, 14906800361, 198740733581, 2658870294349, 35677678567549, 479965685669059, 6471364940381007, 87425255326277907, 1183139999323074963, 16036589185819644633, 217668383345249016045
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Maple
    seq((-1)^n*orthopoly[P](n,0,-3/2,-7),n=0..100); # Robert Israel, Mar 21 2018
  • Mathematica
    a[n_] := (-1)^n Hypergeometric2F1[-n, n - 1/2, 1, 4]; Table[a[n], {n, 0, 19}]

Formula

From Robert Israel, Mar 21 2018: (Start)
a(n) = JacobiP(n,0,-3/2,-7).
n*(2*n-3)*(4*n-7)*a(n)+(2*n-5)*(n-1)*(4*n-3)*a(n-2)-(4*n-5)*(28*n^2-70*n+39)*a(n-1) = 0. (End)
a(n) ~ sqrt(3) * (1 + sqrt(3))^(4*n - 1) / (2^(2*n + 1) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 05 2018

A384364 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 3^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 21, 9, 1, 1, 219, 657, 27, 1, 1, 3045, 119241, 22869, 81, 1, 1, 52923, 40365873, 80850987, 836001, 243, 1, 1, 1103781, 21955523049, 747786838869, 60579666801, 31436181, 729, 1, 1, 26857659, 17512689629457, 14298291269335467, 16117269494868801, 48066954848379, 1204022961, 2187, 1
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Examples

			Square array begins:
  1,  1,      1,           1,                 1, ...
  1,  3,     21,         219,              3045, ...
  1,  9,    657,      119241,          40365873, ...
  1, 27,  22869,    80850987,      747786838869, ...
  1, 81, 836001, 60579666801, 16117269494868801, ...
		

Crossrefs

Columns k=0..2 give A000012, A000244, 3^n * A084768(n).
Rows n=0..1 give A000012, A032033.

Programs

  • PARI
    a(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));

Formula

A(n,k) = (1/4) * Sum_{j>=0} (3/4)^j * binomial(j,n)^k.

A355951 Negated column 0 of the irregular triangle A355587.

Original entry on oeis.org

0, 0, 2, 24, 280, 3400, 212538, 2708944, 244962336, 3195918288, 42013225014, 111125508824, 11603576403816, 30966112647080, 188641282541015866, 2532986569522773024, 34096877865475065728, 459984329860282638816, 105694712757690117569946, 1431044069320995796765272, 73738714208458783084303688
Offset: 0

Views

Author

Hugo Pfoertner, Jul 21 2022

Keywords

Comments

a(n) are the numerators u in the representation R = s/t - (2*sqrt(3)/Pi)*u/v of the resistance between two nodes with distance n on the same grid line in an infinite triangular lattice of one-ohm resistors. The corresponding denominators are A355952. s(n)/t(n) = (1/3)*Sum_{k=0..n-1} A084768(k-1) for n >= 0.
R(n) > 1 [ohm] for n >= 38. Cserti (2000, page 11) claims that R(n) is logarithmically divergent for large values of n.

Crossrefs

Cf. A355587, A355952 (denominators).

Programs

  • PARI
    Rtri(n, p) = {my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
    D(n) = subst(pollegendre(n), x, 7);
    uv(k) = (Rtri(k) - sum(j=0, k-1, D(j))/3) / (2*sqrt(3)/Pi);
    poddpri(primax) = {my(pp=1,p=2); while (p<=primax, p=nextprime(p+1); pp*=p); pp};
    for (k=0, 20, print1(-numerator(bestappr(uv(k),poddpri(k))), ", "))
    \\ for A355952 replace by
    \\ for (k=0, 20, print1(denominator(bestappr(uv(k),poddpri(k))),", "))
Previous Showing 11-13 of 13 results.