cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A114421 Quintuple primorial n##### = n#5.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 26, 51, 95, 161, 319, 806, 1887, 3895, 6923, 14993, 42718, 111333, 237595, 463841, 1064503, 3118414, 8795307, 19720385, 41281849, 103256791, 314959814, 905916621, 2110081195, 4499721541, 11668017383
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quintuple factorial A085157 = n!!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n#5)*((n-1)#5)*((n-2)#5)*((n-3)#5)*((n-4)#5) = n#. n#5 is a k-almost prime for k = ceiling(n/5).

Examples

			n##### is also written n#5.
0#5 = p(0) = 1.
1#5 = p(1) = 2.
2#5 = p(2) = 3.
3#5 = p(3) = 5.
4#5 = p(4) = 7.
5#5 = p(5)p(0) = 11*1 = 11.
6#5 = p(6)p(1) = 13*2 = 26.
7#5 = p(7)p(2) = 17*3 = 51.
8#5 = p(8)p(3) = 19*5 = 95.
9#5 = p(9)p(4) = 23*7 = 161.
10#5 = p(10)p(5)p(0) = 29*11*1 = 319.
11#5 = p(11)p(6)p(1) = 31*13*2 = 806.
12#5 = 37*17*3 = 1887.
13#5 = 41*19*5 = 3895.
14#5 = 43*23*7 = 6923.
15#5 = 47*29*11*1 = 14993.
16#5 = 53*31*13*2 = 42718.
17#5 = 59*37*17*3 = 111333.
18#5 = 61*41*19*5 = 237595.
19#5 = 67*43*23*7 = 463841.
20#5 = 71*47*29*11*1 = 1064503.
21#5 = 73*53*31*13*2 = 3118414.
22#5 = 79*59*37*17*3 = 8795307.
23#5 = 83*61*41*19*5 = 19720385.
24#5 = 89*67*43*23*7 = 41281849.
25#5 = 97*71*47*29*11*1 = 103256791.
26#5 = 101*73*53*31*13*2 = 314959814.
27#5 = 103*79*59*37*17*3 = 905916621.
28#5 = 107*83*61*41*19*5 = 2110081195.
29#5 = 109*89*67*43*23*7 = 4499721541.
30#5 = 113*97*71*47*29*11*1 = 11668017383.
		

Crossrefs

Formula

a(n) = n##### = prime(n)*((n-5)#####) = Prod[i == n mod 5, to n] prime(i). Notationally, prime(0) = 1; (-n)##### = 0#### = 1.

A114869 s(n) = floor(n^(n/5)/n!!!!!).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 6, 5, 5, 7, 10, 16, 12, 14, 18, 26, 39, 31, 35, 45, 64, 98, 79, 88, 114, 163, 249, 200, 223, 291, 416, 636, 511, 572, 745, 1067, 1634, 1316, 1474, 1922, 2755, 4222, 3405, 3817, 4982, 7147, 10961, 8848, 9925, 12966
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

This sequence is an approximation of a quintuple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 5, 10.

Examples

			a(10) = floor(10^2/10!!!!!) = floor(10^2/50) = floor(2) = 2.
a(15) = floor(15^3/15!!!!!) = floor((15^3)/750) = floor(4.5) = 4.
a(20) = floor(20^4/20!!!!!) = floor((20^4)/15000) = floor(10.6666667) = 10.
a(25) = floor(25^5/25!!!!!) = floor((25^5)/375000) = floor(26.0416667) = 26.
a(30) = floor(30^6/30!!!!!) = floor((30^6)/11250000) = floor(64.8) = 64.
a(35) = floor(35^7/35!!!!!) = floor((35^7)/393750000) = floor(163.401389) = 163.
		

Crossrefs

Programs

  • Mathematica
    fac[n_Integer, m_Integer] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/5)/fac[n, 5]]; Array[a, 65] (* Giovanni Resta, Jun 15 2016 *)

Formula

a(n) = floor(n^(n/5)/n!!!). a(n) = floor((A000312(n)^(1/5))/A085157(n)).

Extensions

Corrected and extended by Giovanni Resta, Jun 15 2016

A114968 a(n) = floor(n^(n/6)/n!!!!!!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 6, 4, 4, 5, 7, 10, 15, 11, 12, 14, 18, 26, 37, 28, 29, 35, 46, 64, 94, 71, 74, 89, 117, 163, 238, 180, 188, 226, 297, 416, 608, 461, 481, 580, 763, 1067, 1563, 1187, 1240, 1496, 1969, 2755, 4038, 3070
Offset: 1

Views

Author

Jonathan Vos Post, Feb 22 2006

Keywords

Comments

This sequence is an approximation of a sextuple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 6, 8, 9, 12.

Examples

			a(12) = floor(12^2/12!!!!!) = floor(12^2/72) = floor(2) = 2.
a(18) = floor(18^3/18!!!!!) = floor((18^3)/1296) = floor(4.5) = 4.
a(24) = floor(24^4/20!!!!!) = floor((24^4)/31104) = floor(10.6666667) = 10.
a(30) = floor(30^5/25!!!!!) = floor((30^5)/933120) = floor(26.0416667) = 26.
a(36) = floor(36^6/30!!!!!) = floor((36^6)/33592320) = floor(64.8) = 64.
		

Crossrefs

Programs

  • Mathematica
    fac[n_, m_] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/6)/fac[n, 6]]; Array[a, 65] (* Giovanni Resta, Jun 15 2016 *)

Formula

a(n) = floor(n^(n/6)/n!!!!!!). a(n) = floor(n^(n/6)/n!6). a(n) = floor((A000312(n)^(1/6))/A085158(n)).

Extensions

Corrected and extended by Giovanni Resta, Jun 15 2016
Previous Showing 21-23 of 23 results.