cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 77 results. Next

A289697 Numbers k such that k!6 - 24 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

9, 11, 13, 17, 23, 25, 29, 31, 37, 43, 53, 65, 71, 77, 79, 115, 119, 151, 173, 559, 793, 1571, 1715, 1807, 1861, 2047, 2215, 3491, 4751, 6631, 9089, 9139, 9253, 25811, 29491, 29495, 54335, 54991, 66535, 72365
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 3, 31, 67, 911, 21481, 43201, 623621, 1339951, ...
a(41) > 10^5.
Terms > 43 correspond to probable primes.

Examples

			13!6 - 4 = 13*7*1 - 24 = 67 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[9, 50000], PrimeQ[MultiFactorial[#, 6] - 24] &]
    Select[Range[8,5000],PrimeQ[Times@@Range[#,1,-6]-24]&] (* Harvey P. Dale, Dec 01 2018 *)

Extensions

a(37)-a(40) from Robert Price, Aug 03 2018

A289698 Numbers k such that k!6 - 27 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

10, 14, 16, 34, 46, 86, 116, 130, 344, 410, 446, 746, 824, 1580, 1682, 1918, 2684, 2710, 4172, 4754, 6976, 7418, 8788, 11756, 13546, 16048, 17192, 19624, 24026, 28510, 32758, 41780, 42740, 45856, 51050
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 13, 197, 613, 13404133, 24663654373, 37455569511954513919973, ...
a(36) > 10^5.
Terms > 46 correspond to probable primes.

Examples

			14!6 - 27 = 14*8*2 - 27 = 197 is prime, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 27] &]

Extensions

a(35) from Robert Price, Aug 04 2018

A289699 Numbers k such that k!6 - 32 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 15, 19, 33, 35, 39, 59, 63, 75, 105, 143, 187, 213, 271, 307, 431, 549, 1211, 1597, 1879, 2025, 3085, 5995, 5997, 6697, 6795, 10543, 21515, 25811, 34345, 57561, 70797, 71671
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 23, 59, 373, 1697, 7577923, 21827543, 295540213, ...
a(35) > 10^5.
Terms > 39 correspond to probable primes.

Examples

			15!6 - 32 = 15*9*3 - 32 = 373 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 32] &]

Extensions

a(32)-a(34) from Robert Price, Aug 04 2018

A289700 Numbers k such that k!6 - 36 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 19, 25, 55, 61, 113, 131, 133, 439, 529, 1079, 1621, 2609, 2825, 3997, 4235, 5081, 7319, 8365, 9023, 10273, 18095, 18199, 22625, 24535, 27229, 28883, 99877
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 19, 1693, 43189, 5745471106339, 350473737488839, ...
a(29) > 10^5.
Terms > 25 correspond to probable primes.

Examples

			19!6 - 36 = 19*13*7*1 - 36 = 1693 is prime, so 19 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 36] &]

Extensions

a(28) from Robert Price, Nov 28 2018

A289701 Numbers k such that k!6 - 48 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 17, 25, 35, 41, 73, 77, 89, 113, 115, 121, 125, 137, 155, 169, 287, 521, 709, 721, 1999, 2333, 3029, 4067, 6343, 6773, 11065, 14095, 29969, 36181, 50155, 60973, 84731, 88769
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 7, 43, 887, 43177, 21827527, 894930527, 1714167050058087577, ...
a(35) > 10^5.
Terms > 41 correspond to probable primes.

Examples

			13!6 - 48 = 13*7*1 - 48 = 43 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[11, 50000], PrimeQ[MultiFactorial[#, 6] - 48] &]

Extensions

a(31)-a(34) from Robert Price, Aug 04 2018

A289727 Primes of the form k!6-6, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

929, 1723, 21499, 1339969, 49579069, 42061737019, 8549258359016369, 815970262367657972299041020065569977629234369, 128107331191722301650949440150294486487789796869, 320745817436192067170665942374782284454205305520925161570651550901795210373583984369
Offset: 1

Views

Author

Robert Price, Jul 10 2017

Keywords

Crossrefs

Cf. A289685.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] - 6, {i, 6, 100}], PrimeQ[#]&]

A289728 Primes of the form k!6-8, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

19, 47, 83, 397, 1721, 229627, 21827567, 295540237, 13299311017, 678264862267, 3879320022245629336367, 817800727933873464057151867, 85869076433056713726000946867, 9531467484069295223586105103117, 15873007435437477980505511601565617
Offset: 1

Views

Author

Robert Price, Jul 10 2017

Keywords

Crossrefs

Cf. A289686.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] - 8, {i, 8, 100}], PrimeQ[#]&]

A289729 Primes of the form k!6-9, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

7, 31, 631, 14071, 116471, 24663654391, 1282510028791, 17450008575991, 333247405883391991, 5444123475574783991
Offset: 1

Views

Author

Robert Price, Jul 10 2017

Keywords

Crossrefs

Cf. A289687.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] - 9, {i, 8, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]-9,{n,8,100}],PrimeQ] (* Harvey P. Dale, Aug 21 2023 *)

A289730 Primes of the form k!6-12, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

43, 79, 21493, 623633, 21827563, 49579063, 104463111013, 32799650788086796039050613, 101604346379043295513350613, 3312764729596766399944113113, 40054638345554502541724271794363, 268110968591974440568718596462044971863, 10693051341516541524605341900168015859363
Offset: 1

Views

Author

Robert Price, Jul 10 2017

Keywords

Crossrefs

Cf. A289688.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] - 12, {i, 8, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]-12,{n,8,200}],PrimeQ] (* Harvey P. Dale, Jan 16 2024 *)

A289731 Primes of the form k!6-16, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 389, 919, 8549258359016359, 17694587964658118355578965371540271859, 2388769375228845978003160325157936703109, 8683819409894057159419555626890338258005375505954181180185677734359, 17716286327840198014156487199443278977889267100996146923525170288701171859
Offset: 1

Views

Author

Robert Price, Jul 10 2017

Keywords

Crossrefs

Cf. A289689.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] - 16, {i, 8, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]-16,{n,9,500}],PrimeQ] (* Harvey P. Dale, Apr 07 2025 *)
Previous Showing 41-50 of 77 results. Next