A293485 The number of 8th powers in the multiplicative group modulo n.
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 2, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 2, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 2, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 2, 3, 5, 33, 2, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 2
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Richard J. Mathar, Size of the Set of Residues of Integer Powers of Fixed Exponent, research paper, 2017.
Crossrefs
Programs
-
Maple
A293485 := proc(n) local r,j; r := {} ; for j from 1 to n do if igcd(j,n)= 1 then r := r union { modp(j &^ 8,n) } ; end if; end do: nops(r) ; end proc: seq(A293485(n),n=1..120) ;
-
Mathematica
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^8 - 1, k_ /; Divisible[k, n]]; Array[a, 100] (* Jean-François Alcover, May 24 2023 *) f[p_, e_] := (p - 1)*p^(e - 1)/Switch[Mod[p, 8], 1, 8, 5, 4, , 2]; f[2, e] := If[e <= 4, 1, 2^(e - 5)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
-
PARI
\\ The following two functions by Charles R Greathouse IV, from A247257: g(p, e) = if(p==2, 2^min(e-1, 4), if(p%4==3, 2, if(p%8==5, 4, 8))); A247257(n) = my(f=factor(n)); prod(i=1, #f~, g(f[i, 1], f[i, 2])); A293485(n) = (eulerphi(n)/A247257(n)); \\ Antti Karttunen, Dec 05 2017
Formula
Multiplicative with a(2^e) = 1 for e<=4, a(2^e) = 2^(e-5) for e>=5; a(p^e) = (p-1)*p^(e-1)/8 for p == 1 (mod 8); a(p^e) = (p-1)*p^(e-1)/4 for p == 5 (mod 8); a(p^e) = (p-1)*p^(e-1)/2 for p == {3,7} (mod 8). - R. J. Mathar, Oct 15 2017 [corrected by Georg Fischer, Jul 21 2022]
Comments