cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A181980 Least positive integer m > 1 such that 1 - m^k + m^(2k) - m^(3k) + m^(4k) is prime, where k = A003592(n).

Original entry on oeis.org

2, 4, 2, 6, 2, 20, 20, 26, 25, 10, 14, 5, 373, 4, 65, 232, 56, 2, 521, 911, 1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951, 2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86, 3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361, 40842
Offset: 1

Views

Author

Lei Zhou, Apr 04 2012

Keywords

Comments

1 - m^k + m^(2*k) - m^(3^k) + m^(4*k) equals Phi(10*k,m).
First 15 terms were generated by the provided Mathematica program. All other terms found using OpenPFGW as Fermat and Lucas PRP. Term 16-20, 22-24, 27 have N^2-1 factored over 33.3% and proved using OpenPFGW;
terms 21, 25, 29-33, 36, 37, 39, 41, 42, 45, 48, 51 are proved using CHG pari script;
terms 26, 28, 34, 40 are proved using kppm PARI script;
terms 35, 38, 43, 44, 46, 47, 49, 50 do not yet have a primality certificate.
The corresponding prime number of term 51 (40842) has 236089 digits.
The corresponding prime numbers for the following terms are equal:
p(3) = p(2) = Phi(10, 2^4),
p(12) = p(9) = Phi(10, 5^50),
p(18) = p(14) = Phi(10, 2^160),
p(25) = p(21) = Phi(10, 34^512),
p(40) = p(34) = Phi(10, 86^4000).

Examples

			n=1, A003592(1) = 1, when a=2, 1 - 2^1 + 2^2 - 2^3 + 2^4 = 11 is prime, so a(1)=2;
n=2, A003592(2) = 2, when a=4, 1 - 4^2 + 4^4 - 4^6 + 4^8 = 61681 is prime, so a(2)=4;
...
n=13, A003592(13) = 64, when a=373, PrimeQ(1 - 373^64 + 373^128 - 373^192 + 373^256) = True, while for a = 2..372, PrimeQ(1 - a^64 + a^128 - a^192 + a^256) = False, so a(13)=373.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PowerMod[10, n, n] == 0;a = Select[10 Range@100, fQ]/10; l = Length[a]; Table[m = a[[j]]; i = 1;While[i++; cp = 1 - i^m + i^(2*m)-i^(3*m)+i^(4*m); ! PrimeQ[cp]]; i, {j, 1, l}]
  • PARI
    do(k)=my(m=1);while(!ispseudoprime(polcyclo(10*k,m++)),);m
    list(lim)=my(v=List(), N); for(n=0, log(lim)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); apply(do, vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 04 2012

Formula

a(n) = A085398(10*A003592(n)). - Jinyuan Wang, Jan 01 2023

Extensions

Term 50 added and comments updated by Lei Zhou, Jul 27 2012
Term 51 added and comments updated by Lei Zhou, Oct 10 2012

A252503 Smallest prime p such that Phi_n(p) is also prime, where Phi is the cyclotomic polynomial, or 0 if no such p exists.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 7, 2, 11, 3, 2, 113, 2, 43, 2, 2, 5, 151, 2, 2, 2, 2, 2, 179, 3, 61, 2, 23, 2, 53, 2, 89, 137, 11, 2, 5, 5, 2, 7, 73, 11, 307, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 0, 2, 53, 491, 197, 2, 3, 3, 3, 11, 19, 59, 7, 2, 2, 271, 2, 191, 61, 41, 7, 2, 2, 59, 5, 2, 2
Offset: 1

Views

Author

Eric Chen, Dec 18 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n != 2^k (k>5).
Clearly, if n is a power of 2, and Phi_n(2) is not prime, then a(n) = 0.
Records: 3, 5, 7, 11, 113, 151, 179, 307, 491, 839, 1427, 2411, 5987, 6389, 8933, 11813, 18587, 31721, 40763, 46349, ..., . - Robert G. Wilson v, May 21 2017

Crossrefs

Programs

  • Mathematica
    Do[n=1; p=Prime[n]; cp=Cyclotomic[k, p]; While[!PrimeQ[cp], n=n+1; p=Prime[n]; cp=Cyclotomic[k, p]]; Print[p], {k, 1, 300}]
  • PARI
    a(n)=if(n>>valuation(n,2)==1 && n>32, if(ispseudoprime(2^(n/2)+1), 2, 0), my(P=polcyclo(n)); forprime(p=2,, if(ispseudoprime(subst(P,'x,p)), return(p)))) \\ Charles R Greathouse IV, Dec 18 2014

A298206 a(n) is the smallest b >= 2 such that b^(6*2^n) - b^(3*2^n) + 1 is prime.

Original entry on oeis.org

6, 3, 3, 6, 5, 106, 207, 569, 224, 736, 2854, 21234, 14837, 165394, 24743, 62721, 237804, 143332
Offset: 0

Views

Author

Serge Batalov, Jan 14 2018

Keywords

Comments

a(13) = 165394 is a significant outlier from the generally expected trend, which can be conjectured to be 6*2^n*gamma, where gamma is the Euler-Mascheroni constant A001620. Additionally, the next b > a(13) such that b^(6*2^n) - b^(3*2^n) + 1 is prime is 165836, which is remarkably close to a(13). - Serge Batalov, Jan 24 2018

Examples

			2^12 - 2^6 + 1 = 4033 is composite and 3^12 - 3^6 + 1 = 530713 is prime, so a(1) = 3.
		

Crossrefs

Subsequence of A205506.

Programs

  • PARI
    for(n=0,9,for(b=2,1000,x=b^(3*2^n); if(isprime(x*(x-1)+1), print1(b,", "); break)))

Formula

a(n) = A085398(18*2^n). - Jinyuan Wang, Dec 21 2022

Extensions

a(13) from Serge Batalov, Jan 24 2018

A353101 Least b > 1 such that (b^(prime(n)^2) - 1)/(b^prime(n) - 1) is prime.

Original entry on oeis.org

2, 2, 22, 2, 43, 24, 315, 38, 54, 265, 605, 61, 697, 306, 1153, 370, 2, 10688, 3075, 2338, 1153, 3243, 130, 2301, 315, 200, 1155, 14739, 4591, 2230, 263, 6665, 250, 10520, 2228, 3699, 1126, 8925, 8732, 10556, 19860, 29121, 32804, 4666, 2313, 27398, 14280, 2013, 29022, 26131, 21430, 21996, 95774, 49363, 12648, 54308, 6737, 8745, 11121, 49627
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 24 2022

Keywords

Comments

The expression is the cyclotomic polynomial value Phi_{p^2}(b) where p=prime(n).
By definition, a(n) > 1. The occurrences of a(n)=2 correspond exactly to the terms of A156585.
Does a(n) tend to infinity (is liminf a(n) infinite)?
If it exists, a(27) > 857. - J.W.L. (Jan) Eerland, Dec 23 2022
a(65) = 1624. - Serge Batalov, Nov 17 2023

Crossrefs

Programs

  • Mathematica
    Table[k=2;Monitor[Parallelize[While[True,If[PrimeQ[(k^(Prime[n]^2)-1)/(k^Prime[n]-1)],Break[]];k++];k],k],{n,1,10}] (* J.W.L. (Jan) Eerland, Dec 22 2022 *)
  • PARI
    forprime(p=2,,for(b=2,+oo,if(ispseudoprime(polcyclo(p^2,b)),print1(b,", ");break())))
    
  • Python
    from sympy import isprime, prime
    def a(n, startb=2):
        pn = prime(n); pn2 = pn**2; b = startb
        while not isprime((b**pn2-1)//(b**pn-1)): b += 1
        return b
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Jun 21 2022

Formula

a(n) = A085398(prime(n)^2) = A085398(A001248(n)).

Extensions

a(25)-a(26) from J.W.L. (Jan) Eerland, Dec 23 2022
a(27) from Michael S. Branicky, Apr 04 2023
a(28)-a(33) from Martin Hopf, Nov 10 2023
a(34)-a(60) from Ryan Propper, Nov 17 2023
Previous Showing 21-24 of 24 results.