cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A261852 Decimal expansion of the central binomial sum S(8), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 0, 6, 5, 8, 8, 9, 1, 2, 9, 7, 6, 7, 0, 5, 4, 3, 3, 1, 4, 5, 5, 7, 1, 2, 7, 0, 8, 2, 9, 8, 6, 8, 3, 8, 3, 8, 4, 0, 7, 3, 2, 5, 2, 3, 4, 0, 4, 5, 4, 0, 3, 8, 8, 8, 8, 6, 4, 3, 8, 0, 4, 7, 6, 6, 2, 1, 7, 1, 8, 2, 0, 3, 3, 4, 1, 3, 5, 8, 7, 6, 5, 4, 5, 6, 6, 2, 7, 0, 9, 0, 8, 1, 5, 1, 6, 7, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.5006588912976705433145571270829868383840732523404540388886438...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261850 (S(6)), A261851 (S(7)).

Programs

  • Mathematica
    S[8] = Sum[1/(n^8*Binomial[2n, n]), {n, 1, Infinity}]; RealDigits[S[8], 10, 100] // First

Formula

Equals (1/2) 8F7(1,...,1; 3/2,2,...,2; 1/4).
Also equals (4/45)*Integral_{0..Pi/3} t*log(2*sin(t/2))^6 dt.

A291900 Sum of the divisors of 24*n - 1, divided by 24, minus n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 9, 0, 0, 2, 2, 7, 0, 4, 0, 3, 6, 0, 0, 3, 5, 7, 0, 0, 0, 0, 15, 6, 0, 3, 0, 9, 4, 0, 10, 0, 13, 5, 0, 3, 3, 22, 0, 4, 0, 5, 12, 0, 19, 0, 0, 13, 0, 0, 0, 10, 14, 4, 6, 7, 5, 19, 11, 0, 0, 0, 16, 5, 4, 12, 8, 28, 0, 0, 0, 0, 35, 6, 4, 0, 5, 32, 4, 18, 8, 0, 31, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 02 2017

Keywords

Comments

The indices of the zeros give A131210.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 24 n - 1]/24 - n; Array[a, 90] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    a(n) = sigma(24*n-1)/24 - n; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = sigma(24*n-1)/24 - n = A000203(A183010(n))/24 - n = A280097(n)/24 - n = A280098(n) - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A062785 a(n) = Chowla's function of n * sigma(n).

Original entry on oeis.org

0, 0, 0, 14, 0, 60, 0, 90, 39, 126, 0, 420, 0, 216, 192, 434, 0, 780, 0, 882, 320, 468, 0, 2100, 155, 630, 480, 1512, 0, 2952, 0, 1890, 672, 1026, 576, 4914, 0, 1260, 896, 4410, 0, 5088, 0, 3276, 2496, 1800, 0, 9300, 399, 3906, 1440, 4410, 0, 7800, 1152, 7560, 1760, 2790, 0, 17976, 0, 3168, 4160, 7874, 1512
Offset: 1

Views

Author

Jason Earls, Jul 18 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = DivisorSigma[1, n]}, s*(s - n - 1)]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    a(n) = {my(s = sigma(n)); if(n == 1, 0, s*(s-n-1));}

Formula

a(n) = A000203(n)*A048050(n). - Michel Marcus, Jun 29 2018
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6 - Pi^2/18) * n^3. - Amiram Eldar, Apr 01 2024

Extensions

a(1) corrected by Amiram Eldar, Apr 01 2024

A294614 Sum of the divisors of 12*n - 1, divided by 12, minus n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 8, 4, 3, 0, 3, 6, 0, 0, 5, 0, 7, 4, 0, 0, 0, 18, 0, 0, 0, 0, 9, 4, 12, 4, 0, 14, 0, 0, 5, 8, 11, 0, 0, 6, 0, 12, 9, 0, 5, 0, 13, 6, 5, 10, 7, 14, 0, 0, 5, 0, 31, 0, 5, 0, 7, 30, 0, 12, 0, 0, 17, 6, 0, 0, 13, 18, 9, 8
Offset: 1

Views

Author

Omar E. Pol and Robert G. Wilson v, Nov 04 2017

Keywords

Comments

a(n) = 0 iff n is in A138620.
First occurrence of k > -1: 1, 3, 8, 13, 18, 31, 28, 33, 23, 43, 66, 53, 45, 63, 48, 101, 166, etc.

Examples

			a(13) = 3 since d(12*13-1)/12 - 13 = 192/12 - 13 = 16 - 13 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 12 n - 1]/12 - n; Array[a, 90]
  • PARI
    a(n) = sigma(12*n-1)/12 - n;

Formula

a(n) = sigma(12*n-1)/12 - n = A000203(A017653(n-1))/12 - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A295012 a(n) = sigma(12n - 1)/12, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 2, 4, 4, 5, 6, 7, 10, 9, 12, 11, 14, 16, 14, 15, 16, 20, 22, 19, 20, 21, 22, 31, 28, 28, 26, 30, 34, 29, 30, 36, 32, 40, 38, 35, 36, 37, 56, 39, 40, 41, 42, 52, 48, 57, 50, 47, 62, 49, 50, 56, 60, 64, 54, 55, 62, 57, 70, 68, 60, 66, 62, 76, 70, 70, 76
Offset: 1

Views

Author

M. F. Hasler, Dec 08 2017

Keywords

Comments

Robert G. Wilson v observes in A280098 that {1, 3, 4, 6, 8, 12, 24} seem to be the only positive integers k such that sigma(kn-1)/k is an integer for all n > 0.

Crossrefs

Cf. A280098 (analog for k = 24), A097723 (analog for k = 4), A033686 (analog for k = 3), A000203 (sigma, also the analog for k = 1).
The analog for k = 8 is A258835, up to the offset.
The analog for k = 6 is A098098 (up to the offset), a signed variant of this and the preceding one is A258831.
Cf. A086463.

Programs

  • GAP
    sequence := List([1..10^5], n-> Sigma(12 *n-1)/12); # Muniru A Asiru, Dec 28 2017
  • Maple
    with(numtheory):
    seq(sigma(12*n-1)/12, n=1..10^3); # Muniru A Asiru, Dec 28 2017
  • Mathematica
    Array[DivisorSigma[1, 12 # - 1]/12 &, 66] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    vector(90,n,sigma(12*n-1)/12)
    

Formula

Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024

A306198 Multiplicative with a(p^e) = p^(e-1)*(p^2 - p - 1).

Original entry on oeis.org

1, 1, 5, 2, 19, 5, 41, 4, 15, 19, 109, 10, 155, 41, 95, 8, 271, 15, 341, 38, 205, 109, 505, 20, 95, 155, 45, 82, 811, 95, 929, 16, 545, 271, 779, 30, 1331, 341, 775, 76, 1639, 205, 1805, 218, 285, 505, 2161, 40, 287, 95, 1355, 310, 2755, 45, 2071, 164, 1705, 811
Offset: 1

Views

Author

Jianing Song, Jan 28 2019

Keywords

Comments

For any positive integer n and any m coprime to n, define R(n,m) = Product_{primes p divides n} (p - [m == 1 (mod p)]), where [] is an Iverson branket. Then we have the following conjecture: (Start)
Let k == 2, 3 (mod 4) be a squarefree number, b be any positive integer such that k*b^2 is not a perfect power and not equal to -1, n be either coprime to or divisible by 4*k. Define Q(N,k*b^2,n,m) = # {primes p <= N : p == m (mod n), k*b^2 is a primitive modulo p}, then:
(a) if gcd(n, 4*k) = 1, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ R(n,m)/a(n);
(b) if 4*k divides n, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ 2*R(n,m)/a(n) if Jacobi(k/m) = -1 and 0 if Jacobi(k/m) = +1,
Where C is the Artin's constant = A005596, PrimePi = A000720. (End)
(Note that Sum_{m=1..n, gcd(m,n)=1} R(n,m) = a(n).)
For example, let N = 10^6:
k*b^2 | n | m | Q(N,k*b^2,n,m) | Q(N,k*b^2,n,m)/(C*PrimePi(N))
2 | 8 | 3 | 14642 | 0.498794... approx = 2/4
3 | 5 | 1 | 6192 | 0.210936... approx = 4/19
-2 | 48 | 13 | 2933 | 0.099915... approx = 4/40
-5 | 9 | 5 | 5933 | 0.202113... approx = 3/15

Crossrefs

Cf. A000720 (PrimePi), A005596 (Artin's constant), A086463.

Programs

  • Maple
    P := (p, e) -> p^(e-1)*(p^2 - p - 1):
    a := n -> mul(P(f[1], f[2]), f in ifactors(n)[2]):
    seq(a(n), n=1..58); # Peter Luschny, Feb 13 2019
  • Mathematica
    a[n_] := Product[{p, e} = pe; p^(e-1) (p^2-p-1), {pe, FactorInteger[n]}]; a[1] = 1; Array[a, 58] (* Jean-François Alcover, Jul 22 2019 *)
  • PARI
    a(n) = my(f=factor(n)); prod(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); (p^2 - p - 1)*p^(e-1))

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 3/p^2 + 1/p^3 + 1/p^4) = 0.1314639252... . - Amiram Eldar, Dec 01 2022

A355058 Numbers m such that d(m) mod 6 = 3, where d(m) is the number of divisors of m.

Original entry on oeis.org

4, 9, 25, 36, 49, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364
Offset: 1

Views

Author

Michael De Vlieger, Jul 04 2022

Keywords

Comments

All terms are square; contains squares of primes.

Examples

			Let p be a prime; p^2 has 3 divisors {1, p, p^2}, therefore all squares of primes {4, 9, 25, 49, ...} are in the sequence.
36 is in the sequence because d(36) = 9, and 9 mod 6 = 3.
16 is not in the sequence because it has 5 divisors, and 5 mod 6 = 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^12], Mod[DivisorSigma[0, #], 6] == 3 &]
  • PARI
    isok(m) = (numdiv(m) % 6) == 3; \\ Michel Marcus, Jul 05 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint, prod
    def A355058_gen(): # generator of terms
        return map(lambda n:n**2,filter(lambda n:prod((2*e+1)%6 for e in factorint(n).values())%6==3,count(1)))
    A355058_list = list(islice(A355058_gen(),30)) # Chai Wah Wu, Jul 06 2022

Formula

Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463). - Amiram Eldar, Jul 06 2022

A246686 Decimal expansion of 'mu', a percolation constant associated with the asymptotic threshold for 3-dimensional bootstrap percolation.

Original entry on oeis.org

4, 0, 3, 9, 1, 2, 7, 2, 0, 2, 9, 8, 7, 5, 5, 8, 3, 7, 9, 3, 2, 1, 1, 4, 2, 0, 7, 4, 4, 9, 5, 3, 4, 9, 8, 8, 7, 1, 0, 2, 7, 1, 9, 2, 9, 3, 7, 7, 5, 4, 3, 2, 6, 4, 4, 1, 1, 4, 4, 6, 8, 8, 4, 6, 3, 3, 6, 8, 6, 3, 0, 7, 0, 1, 2, 9, 4, 0, 2, 3, 6, 5, 9, 3, 7, 6, 9, 6, 2, 1, 6, 8, 0, 6, 4, 3, 0, 5, 0, 5, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 01 2014

Keywords

Examples

			0.4039127202987558379321142074495349887102719293775432644...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.18 Percolation Cluster Density Constants, pp. 371-378.

Crossrefs

Cf. A086463 (analog 2-dimensional percolation constant).

Programs

  • Mathematica
    mu = -NIntegrate[Log[1/2 - Exp[-2*x]/2 + (1/2)*Sqrt[1 + Exp[-4*x] - 4*Exp[-3*x] + 2 *Exp[-2*x]]] , {x, 0, Infinity}, WorkingPrecision -> 101]; RealDigits[mu] // First

Formula

Equals -Integral_{0..oo} log(1/2 - exp(-2*x)/2 + (1/2)*sqrt(1 + exp(-4*x) - 4*exp(-3*x) + 2*exp(-2*x))) dx.

A321675 a(n) = Sum_{k=1..10^n} k*sigma(k).

Original entry on oeis.org

1, 622, 558275, 549175530, 548429473046, 548320905633448, 548312690631798482, 548311465139943768941, 548311366911386862908968, 548311356554322895313137239, 548311355740964925044531454428, 548311355626818302486560961291870, 548311355617569600726982364186141942
Offset: 0

Views

Author

Daniel Suteu, Nov 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Sum[k DivisorSigma[1, k], {k, 10^#}] &, 7, 0] (* Michael De Vlieger, Nov 20 2018 *)
  • PARI
    a(n) = sum(k=1, 10^n, k*sigma(k)); \\ Michel Marcus, Nov 23 2018

Formula

a(n) = A143128(10^n).
a(n) ~ 10^(3*n) * Pi^2 / 18.
Previous Showing 21-29 of 29 results.