cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A349768 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * binomial(2*k,k) / (k+1).

Original entry on oeis.org

1, 3, 19, 173, 1881, 22655, 291775, 3940725, 55149025, 793387235, 11668476579, 174735112997, 2656296912361, 40897718776647, 636588467802679, 10002872642155085, 158483629611962025, 2529389028336106475, 40631849127696017275, 656509442594976984405, 10663184061320964941761
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Crossrefs

Programs

  • Maple
    A349768 := proc(n)
        hypergeom([1/2,-n,n+1],[1,2],-4) ;
        simplify(%) ;
    end proc:
    seq(A349768(n),n=0..20) ; # R. J. Mathar, Mar 02 2023
  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n + k, k] Binomial[2 k, k]/(k + 1), {k, 0, n}], {n, 0, 20}]
    Table[HypergeometricPFQ[{1/2, -n, n + 1}, {1, 2}, -4], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(n+k,k)*binomial(2*k,k)/(k+1)); \\ Michel Marcus, Nov 29 2021

Formula

From Vaclav Kotesovec, Nov 29 2021: (Start)
D-finite recurrence: n*(n+1)*(2*n - 3)*a(n) = (2*n - 1)*(19*n^2 - 37*n + 12)*a(n-1) - (2*n - 3)*(19*n^2 - 39*n + 14)*a(n-2) + (n-3)*(n-2)*(2*n - 1)*a(n-3).
a(n) ~ sqrt(5) * phi^(6*n + 3) / (8*Pi*n^2), where phi = A001622 is the golden ratio. (End)
D-finite with recurrence n*(n+1)*a(n) +(n+1)*(n-4)*a(n-1) +2*(-171*n^2 +512*n -388)*a(n-2) +2*(9*n^2 +296*n -796)*a(n-3) +(341*n^2 -2425*n +4320)*a(n-4) -19*(n-4)*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2023

A367178 Triangle read by rows. T(n, k) = binomial(n, k)^2 * CatalanNumber(k).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 5, 1, 16, 72, 80, 14, 1, 25, 200, 500, 350, 42, 1, 36, 450, 2000, 3150, 1512, 132, 1, 49, 882, 6125, 17150, 18522, 6468, 429, 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430, 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862
Offset: 0

Views

Author

Peter Luschny, Nov 07 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  4,    2;
  [3] 1,  9,   18,     5;
  [4] 1, 16,   72,    80,     14;
  [5] 1, 25,  200,   500,    350,     42;
  [6] 1, 36,  450,  2000,   3150,   1512,    132;
  [7] 1, 49,  882,  6125,  17150,  18522,   6468,    429;
  [8] 1, 64, 1568, 15680,  68600, 131712, 103488,  27456,   1430;
  [9] 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862;
		

Crossrefs

Cf. A086618 (row sums), A186415 (central column), A000108 (main diagonal).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)^2 * binomial(2*k, k) / (k + 1):
    seq(seq(T(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) = binomial(n, k)^2 * binomial(2*k, k) / (k + 1).
T(n, k) = [x^n] hypergeom([1/2, -n, -n], [1, 2], 4*x).
Previous Showing 11-12 of 12 results.