cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A371550 Expansion of e.g.f. Product_{k>=1} (1 + mu(k)^2*x^k/k!).

Original entry on oeis.org

1, 1, 1, 4, 4, 11, 67, 29, 260, 876, 3841, 34134, 69774, 152231, 774243, 4182754, 30376720, 409813561, 1056300594, 3175397668, 3655126844, 91668397027, 499871922705, 5219638765816, 120716816247428, 17518596045460, 193032439198301, 3860666483055372, 22675538336311998
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[(1 + MoebiusMu[k]^2 x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A378843 Number of compositions (ordered partitions) of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 7, 1, 0, 0, 1, 1, 24, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 151, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 31, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 864, 1, 1, 0, 0, 1, 127, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 7, 1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2024

Keywords

Comments

From Robert Israel, Dec 15 2024: (Start)
If n is squarefree, a(n) >= 1, as [n] is a composition.
If n = b * c where b and c are coprime and c is squarefree, then a(n) >= a(b), as for any composition C of b into distinct squarefree divisors, multiplying each element of C by c gives a composition of n into distinct squarefree divisors. (End)

Examples

			a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
a(12) = 24 because we have [6, 3, 2, 1] and 4! = 24 permutations.
		

Crossrefs

Programs

  • Maple
    ptns:= proc(S,n) option remember;
      # subsets of S with sum n
      local m,s;
      if convert(S,`+`) < n then return {} fi;
      if n = 0 then return {{}} fi;
      s:= max(S);
      if s > n then return procname(select(`<=`,S,n),n) fi;
      map(t -> t union {s}, procname(S minus {s},n-s)) union procname(S minus {s}, n)
      end proc:
    sfd:= proc(n) map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`) end proc:
    f:= proc(n) local t;
         add((nops(t))!, t = ptns(sfd(n),n))
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 15 2024
  • Mathematica
    a[n_] := Module[{d = Select[Divisors[n], SquareFreeQ]}, Total[(Length /@ Select[Subsets[d], Total[#] == n &])!]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Dec 10 2024 *)

A281667 Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 + x^i) * Product_{j>=1} (1 + mu(j)^2*x^j), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 1, 3, 2, 3, 6, 5, 9, 10, 12, 15, 16, 20, 24, 27, 38, 41, 48, 56, 62, 78, 88, 101, 120, 131, 149, 174, 189, 221, 243, 278, 318, 349, 394, 444, 491, 556, 622, 693, 773, 849, 953, 1048, 1158, 1292, 1422, 1568, 1735, 1901, 2101, 2307, 2534, 2795, 3060, 3357, 3681, 4024, 4404, 4809, 5245, 5734, 6242, 6805, 7418
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 26 2017

Keywords

Comments

Total number of parts in all partitions of n into distinct squarefree parts (A005117).

Examples

			a(8) = 9 because we have [7, 1], [6, 2], [5, 3], [5, 2, 1] and 2 + 2 + 2 + 3 = 9.
		

Crossrefs

Programs

  • Mathematica
    nmax = 64; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 + x^i), {i, 1, nmax}] Product[1 + MoebiusMu[j]^2 x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 + x^i) * Product_{j>=1} (1 + mu(j)^2*x^j).

A305080 Number of connected strict integer partitions of n with pairwise indivisible and squarefree parts.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 2, 3, 2, 2, 4, 2, 3, 4, 4, 3, 4, 3, 4, 5, 6, 4, 6, 5, 7, 6, 5, 6, 8, 6, 6, 6, 10, 11, 11, 9, 11, 9, 13
Offset: 1

Views

Author

Gus Wiseman, May 25 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
Conjecture: This sequence is "eventually increasing," meaning that for all k >= 0 there exists an m >= 0 such that a(n) > k for all n > m. For k = 0 it appears we can take m = 18, for example.

Examples

			The a(52) = 6 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,10,6): {{2,4},{2,3},{1,3},{1,2}}
(22,14,10,6): {{1,5},{1,4},{1,3},{1,2}}
     (30,22): {{1,2,3},{1,5}}
     (38,14): {{1,8},{1,4}}
     (42,10): {{1,2,4},{1,3}}
      (46,6): {{1,9},{1,2}}
The a(60) = 8 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
    (33,21,6): {{2,5},{2,4},{1,2}}
   (35,15,10): {{3,4},{2,3},{1,3}}
    (39,15,6): {{2,6},{2,3},{1,2}}
      (34,26): {{1,7},{1,6}}
      (38,22): {{1,8},{1,5}}
      (39,21): {{2,6},{2,4}}
      (46,14): {{1,9},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@SquareFreeQ/@#,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
Previous Showing 21-24 of 24 results.