cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0

Views

Author

Peter Luschny, Dec 06 2023

Keywords

Examples

			  [0]   1;
  [1]   1,    2;
  [2]   2,    4,    5;
  [3]   6,   12,   15,   16;
  [4]  24,   48,   60,   64,   65;
  [5] 120,  240,  300,  320,  325,  326;
  [6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
		

Crossrefs

Cf. A094587, A000142 (T(n, 0)), A052849 (T(n, 1)), A000522 (T(n, n)), A007526 (T(n,n-1)), A038154 (T(n, n-2)), A355268 (T(n, n/2)), A367963(n) (T(2*n, n)/n!).
Cf. A001339 (row sums), A087208 (alternating row sums), A082030 (accumulated sums), A053482, A331689.

Programs

  • Maple
    T := (n, k) -> add(n!/j!, j = 0..k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *)
    Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
  • Python
    from functools import cache
    @cache
    def a_row(n: int) -> list[int]:
        if n == 0: return [1]
        row = a_row(n - 1) + [0]
        for k in range(n): row[k] *= n
        row[n] = row[n - 1] + 1
        return row
  • SageMath
    def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1))
    for n in range(9): print([T(n, k) for k in range(n + 1)])
    

Formula

T(n, k) = A094587(n, k) * A000522(k).
T(n, k) = e * (n! / k!) * Gamma(k + 1, 1).
Sum_{k=0..n} T(n, k) * 2^(n - k) = A053482(n).
Sum_{k=0..n} T(n, k) * binomial(n, k) = A331689(n).
Recurrence: T(n, n) = T(n, n-1) + 1 starting with T(0, 0) = 1.
For k <> n: T(n, k) = n * T(n-1, k).

A371319 E.g.f. satisfies A(x) = exp(x) + x^2*A(x)^2.

Original entry on oeis.org

1, 1, 3, 13, 97, 881, 10561, 147505, 2453025, 46234081, 988356961, 23439248801, 613770379729, 17541180307249, 544252239627825, 18203134190836561, 653255126565875521, 25031281492493722817, 1020214630056827123137, 44067538801695759773761
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(2*exp(x)/(1+sqrt(1-4*x^2*exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (k+1)^(n-2*k-1)*binomial(2*k, k)/(n-2*k)!);

Formula

E.g.f.: 2*exp(x)/(1 + sqrt(1 - 4*x^2*exp(x))).
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(n-2*k-1) * binomial(2*k,k)/(n-2*k)!.

A371320 E.g.f. satisfies A(x) = exp(x) + x^2*A(x)^3.

Original entry on oeis.org

1, 1, 3, 19, 181, 2341, 38071, 748567, 17262505, 457068745, 13667029291, 455560747291, 16750696633309, 673549397276653, 29403437531813983, 1384945157486054431, 70010050730247746641, 3780682522365453684625, 217218502250130209410387
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (2*k+1)^(n-2*k-1)*binomial(3*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (2*k+1)^(n-2*k-1) * binomial(3*k,k)/(n-2*k)!.
Previous Showing 11-13 of 13 results.