cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A381740 Squarefree numbers k such that k^2 is abundant.

Original entry on oeis.org

6, 10, 14, 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 170, 174, 182, 186, 190, 210, 222, 230, 238, 246, 258, 266, 282, 286, 290, 310, 318, 322, 330, 354, 366, 370, 374, 390, 402, 406, 410, 418, 426, 430, 434, 438, 442, 462, 470, 474, 498, 506, 510
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2025

Keywords

Comments

The least odd term is a(105) = 105.
The least term that is coprime to 6 is a(3637276) = 37182145.
If k is a squarefree number that is divisible by 6, 10 or 14, then it is a term. Therefore a lower bound for the asymptotic density of this sequence is 29/(192*zeta(2)) = 0.0918... .
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 2, 8, 99, 972, 9826, 97610, 979190, 9770801, 97650638, 976893969, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0976... .
If k is a term then any multiple of k that is squarefree is a term. The primitive terms are in A381741.

Crossrefs

Intersection of A005117 and A381738.
Subsequences: A087248, A381741.
Cf. A013661.

Programs

  • Mathematica
    Select[Range[600], SquareFreeQ[#] && DivisorSigma[-1, #^2] > 2 &]
  • PARI
    isok(k) = {my(f = factor(k)); if(!issquarefree(f), 0, prod(i = 1, #f~, f[i,2] *= 2); sigma(f, -1) > 2);}

A112644 Odd and squarefree abundant numbers not divisible by 5.

Original entry on oeis.org

22309287, 28129101, 30069039, 34051017, 35888853, 36399363, 38057019, 39768729, 40681641, 41708667, 43444401, 45588543, 45894849, 48141093, 48555507, 50489439, 51294243, 51408357, 53804751, 54777723, 55186131, 56429373, 57228171, 58555497, 59168109
Offset: 1

Views

Author

Labos Elemer, Sep 20 2005

Keywords

Comments

The least term that is not divisible by 3 is 73#/5# = Product_{k=4..21} prime(k) = 1357656019974967471687377449. - Amiram Eldar, Aug 15 2024

Examples

			99906807 = 3*7*11*13*17*19*103 is a term since it is an odd squarefree number that is not divisible by 5, and sigma(99906807) = 201277440 > 2*99906807.
		

Crossrefs

Programs

  • Mathematica
    ta={{0}};Do[g=n;s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&Equal[Abs[MoebiusMu[n]], 1]&& !Equal[Mod[n, 2], 0]&&!Equal[Mod[n, 5], 0], Print[n, PrimeFactorList[n], s];ta=Append[ta, n]], {n, 10000000, 100000000}];{ta=Delete[ta, 1], g}
  • PARI
    issfab(k) = my(f = factor(k)); issquarefree(f) && sigma(f, -1) > 2;
    is(k) = gcd(k, 10) == 1 && issfab(k); \\ Amiram Eldar, Aug 15 2024

A379030 Nonsquarefree modified exponential abundant numbers: nonsquarefree numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

120, 150, 168, 270, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1320, 1380, 1386, 1428, 1470, 1530, 1560, 1596, 1638, 1650, 1710, 1734, 1740, 1848, 1860, 1890, 1950, 2040, 2058, 2070, 2142, 2166, 2184, 2220, 2280, 2394
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are also modified exponential abundant numbers (A379029). This sequence lists the terms of A379029 that are not in A087248.
The numbers of terms that do no exceed 10^k, for k = 3, 4, ..., are 14, 211, 2090, 21236, 212744, 2123071, 21235175, 212450318, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0212... .

Crossrefs

Intersection of A013929 and A379029.
Complement of A087248 within A379029.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; nsmeAbQ[n_] := !SquareFreeQ[n] && mesigma[n] > 2*n; Select[Range[2400], nsmeAbQ]
  • PARI
    is(n) = {my(f=factor(n)); if(issquarefree(f), 0, prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n);}

A387154 The least number k that is not n-free whose sum of n-free divisors is larger than 2*k.

Original entry on oeis.org

401120980260, 360360, 55440, 110880, 100800, 120960, 241920, 483840, 967680, 1935360, 3870720, 7741440, 15482880, 30965760, 61931520, 123863040, 247726080, 495452160, 990904320, 1981808640, 3963617280, 7927234560, 15854469120, 31708938240, 63417876480, 126835752960
Offset: 2

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

n-free numbers are numbers that are not divisible by an n-th power larger than 1. E.g., A005117, A004709, and A046100 for n = 2, 3, and 4, respectively.
The sum of n-free divisors of a number is the sum of its divisors that are n-free numbers. E.g., A048250, A073185, and A385006 for n = 2, 3, and 4, respectively.
All the terms are in A025487.

Examples

			For n = 2, the numbers k such that A048250(k) > 2*k include all the squarefree abundant numbers (A087248). The least nonsquarefree number (A013929) k such that A048250(k) > 2*k is 401120980260 = 2^2*3*5*7*11*13*17*19*23*29*31.
For n = 3, the numbers k such that A073185(k) > 2*k include all the cubefree abundant numbers (A357695). The least noncubefree number (A046099) k such that A073185(k) > 2*k is A357700(1) = 360360 = 2^3*3^2*5*7*11*13.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 7, {401120980260, 360360, 55440, 110880, 100800}[[n-1]], 945 * 2^n]; Array[a, 26, 2]
  • PARI
    a(n) = if(n < 7, [401120980260, 360360, 55440, 110880, 100800][n-1], 945 * 2^n);

Formula

a(n) = 945 * 2^n for n >= 7.

A354951 The number of squarefree abundant numbers whose largest prime divisor is prime(n).

Original entry on oeis.org

0, 0, 1, 3, 5, 13, 27, 59, 125, 257, 534, 1094, 2244, 4607, 9407, 19164, 38939, 79154, 160473, 325213, 658940, 1332598, 2694009, 5440236, 10973874, 22135366, 44644593, 89989907, 181374472, 365371286, 734959945
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2022

Keywords

Comments

For n >= 3 we have a(n) >= 2^(n-3) as all squarefree numbers whose largest prime divisor are prime(n) that are a multiple of 6*prime(n) are abundant. - David A. Corneth, Jun 13 2022

Examples

			n  prime(n)  a(n)  terms k of A087248 with A006530(k) = prime(n)
-  --------  ----  ---------------------------------------------
1  2         0     -
2  3         0     -
3  5         1     30
4  7         3     42, 70, 210
5  11        5     66, 330, 462, 770, 2310
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(SquareFreeQ[#] && DivisorSigma[-1, #] > 2 &)]; Array[a, 15]

A387153 Squarefree 3-abundant numbers: squarefree numbers k such that A000203(k) > 3*k.

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 79170, 82110, 84630, 85470, 91770, 94710, 99330, 101010, 103530, 108570, 111930, 117390, 122430, 128310, 136290, 140910, 144690, 154770, 161070, 164010, 166530, 168630, 182490, 191730, 205590
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

First differs from A067885 at n = 11: A067885(11) = 72930 is not a term of this sequence. a(59) = 510510 is the least term of this sequence that is not in A067885.
Subsequence of A285615 and first differs from it at n = 51: A285615(51) = 390390 is not a term of this sequence.
This sequence is not the same as the sequence of numbers k such that A048250(k) > 3*k which includes all the terms of this sequence but also nonsquarefree numbers, the least of them is 2*A002110(52) = A088860(52) = 2.1248...*10^96.
The least odd term is A002110(17)/2 = 961380175077106319535, the least term that is not divisible by 3 is a(5607800) = 66853496710, and the least term that is coprime to 6 is A002110(52)/6 = 1.7706...*10^95.
If k is a term and m is a squarefree number coprime to k, then k*m is also a term.
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 17, 95, 795, 8162, 86331, 854164, 8372782, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00008... .

Examples

			30030 = 2 * 3 * 5 * 7 * 11 * 13 is a term since it is squarefree, and sigma(30030) = 96768 > 3*30030 = 90090.
		

Crossrefs

Intersection of A005117 and A068403.
Subsequence of A087248 and A285615.

Programs

  • Mathematica
    q[k_] := Module[{f = FactorInteger[k]}, Max[f[[;;, 2]]] == 1 && Times @@ (1 + f[[;; , 1]]) > 3*k]; Select[Range[2*10^5], q]
  • PARI
    isok(k) = {my(f = factor(k)); issquarefree(f) && vecprod(apply(x -> x+1, f[, 1])) > 3*k;}

Formula

A001221(a(n)) >= 6.

A387155 The number of n-free abundant numbers below the least number k that is not n-free whose sum of n-free divisors is larger than 2*k.

Original entry on oeis.org

22148167706, 52012, 10828, 24601, 23660, 29114, 58967, 118828, 238600, 478099, 957324, 1916191, 3834167, 7669094, 15335488, 30667762, 61337894, 122679755, 245357929, 490718137, 981456651, 1962956352, 3925957422, 7851819466, 15703524589, 31406984903, 62813576969
Offset: 2

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

n-free numbers are numbers that are not divisible by an n-th power larger than 1. E.g., A005117, A004709, and A046100 for n = 2, 3, and 4, respectively.
The sum of n-free divisors of a number is the sum of its divisors that are n-free numbers. E.g., A048250, A073185, and A385006 for n = 2, 3, and, respectively.

Examples

			a(2) = 22148167706 because there are 22148167706 squarefree numbers k such that A048250(k) > 2*k (i.e., terms of A087248) that are less than the least nonsquarefree number k that has this property, A387154(2) = 401120980260.
a(3) = 52012 because there are 52012 cubefree numbers k such that A073185(k) > 2*k (i.e., terms of A357695) that are less than the least noncubefree number k that has this property, A387154(3) = 360360.
		

Crossrefs

Programs

  • Mathematica
    freeQ[n_, k_] := AllTrue[FactorInteger[n][[;; , 2]], # < k &];
    sigma[n_, k_] := Times @@ ((First[#]^(Min[Last[#], k - 1] + 1) - 1)/(First[#] - 1) & /@ FactorInteger[n]);
    a[n_] := Module[{m = 2, c = 0}, While[True, If[sigma[m, n] > 2*m, c++; If[!freeQ[m, n], Break[]]]; m++]; c-1];
  • PARI
    isfree(n, k) = if(n == 1, 1, my(e = factor(n)[,2]); for(i=1, #e, if(e[i] >= k, return(0))); 1);
    sigmafree(n, k) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(f[i,2],k-1)+1)-1)/(f[i,1]-1));}
    a(n) = {my(m = 2, c = 0); while(1, if(sigmafree(m, n) > 2*m, c++; if(!isfree(m, n), break)); m++); c-1;}

Formula

Let A_k(n) be the number of k-free abundant numbers that are not exceeding n. Then, a(n) = A_n(A387154(n)) - 1.
a(n) ~ c * 945 * 2^n, where c = A302991.

A357687 Nonsquarefree numbers k such that A048250(k) > 2*k.

Original entry on oeis.org

401120980260, 14841476269620, 16445960190660, 17248202151180, 18852686072220, 608500527054420, 638183479593660, 697549384672140, 707176288198380, 772960128961020, 810665501105460, 26165522663340060, 28599524771557740, 29994623540902020, 33237285545323860, 1229779565176982820
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Comments

The squarefree numbers k such that A048250(k) > 2*k are the squarefree abundant numbers (A087248).
The least odd term is 3*prime(553)#/2 = 3.735...*10^1709.

Crossrefs

Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, AnyTrue[f[[;;, 2]], # > 1 &] && Times @@ (f[[;;, 1]]+1) > 2*n];
  • PARI
    is(n) = {my(f = factor(n)); if(n == 1 || vecmax(f[,2]) == 1, return(0)); prod(i=1, #f~, f[i,1]+1) > 2*n};
Previous Showing 11-18 of 18 results.