A158256
Values of d in AP 11+210*d*i, i=0..10, with 11 primes.
Original entry on oeis.org
7315048, 23389398, 368453046, 397698469, 476527246, 716025940, 1428738103, 1517391167, 1761057635, 1796879220, 2436613965, 2762038441, 3041254151, 3340639523, 3551566265, 3698215410, 4207031185, 4407805122, 4556491589, 5072158298, 5626167378, 5986324571, 7430871116, 8023346435, 8172201108, 8457933834, 10733118467
Offset: 1
A383134
Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).
Original entry on oeis.org
2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The array begins as:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 2, 1, 1, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 3, 4, 2, 3, 1, 2, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 1, 1, 2, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
...
A(2,2) = 3 since 3 primes are in arithmetic progression with a difference of 2 and the first term equal to the 2nd prime: 3, 5, and 7.
A(6,3) = 5 since 5 primes are in arithmetic progression with a difference of 6 and the first term equal to the 3rd prime: 5, 11, 17, 23, and 29.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.
-
A[n_,k_]:=Module[{count=1,sum=Prime[k]},While[PrimeQ[sum+=n], count++]; count]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten