cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A158256 Values of d in AP 11+210*d*i, i=0..10, with 11 primes.

Original entry on oeis.org

7315048, 23389398, 368453046, 397698469, 476527246, 716025940, 1428738103, 1517391167, 1761057635, 1796879220, 2436613965, 2762038441, 3041254151, 3340639523, 3551566265, 3698215410, 4207031185, 4407805122, 4556491589, 5072158298, 5626167378, 5986324571, 7430871116, 8023346435, 8172201108, 8457933834, 10733118467
Offset: 1

Views

Author

Zak Seidov, Mar 15 2009

Keywords

Crossrefs

A383134 Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).

Original entry on oeis.org

2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Stefano Spezia, Apr 17 2025

Keywords

Examples

			The array begins as:
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 2, 1, 2, 1, 2, 1, 1, 2, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 5, 3, 4, 2, 3, 1, 2, 1, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 2, 1, 2, 1, 1, 1, 2, 2, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
  ...
A(2,2) = 3 since 3 primes are in arithmetic progression with a difference of 2 and the first term equal to the 2nd prime: 3, 5, and 7.
A(6,3) = 5 since 5 primes are in arithmetic progression with a difference of 6 and the first term equal to the 3rd prime: 5, 11, 17, 23, and 29.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.

Crossrefs

Programs

  • Mathematica
    A[n_,k_]:=Module[{count=1,sum=Prime[k]},While[PrimeQ[sum+=n], count++]; count]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten

Formula

A(A006512(n),k) = 1 for n > 1.
A(A040976(n),k) = A054977(k+1).
Previous Showing 11-12 of 12 results.