cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A231754 Products of distinct primes congruent to 1 modulo 4 (A002144).

Original entry on oeis.org

1, 5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 137, 145, 149, 157, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 293, 305, 313, 317, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421, 433, 445, 449
Offset: 1

Views

Author

Michel Marcus, Nov 13 2013

Keywords

Comments

Contains A002144 as a subsequence, and is a subsequence of A016813 and of A005117.
Also, these numbers satisfy A231589(n) = floor(n*(n-1)/4) (A011848).

Examples

			65 = 5*13 is in the sequence since both 5 and 13 are congruent to 1 modulo 4.
		

Crossrefs

Intersection of A005117 and A004613.

Programs

  • Maple
    isA231754 := proc(n)
        local d;
        for d in ifactors(n)[2] do
            if op(2,d) > 1 then
                return false;
            elif modp(op(1,d),4) <> 1 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 500 do
        if isA231754(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 16 2016
  • Mathematica
    Select[Range[500], # == 1 || AllTrue[FactorInteger[#], Last[#1] == 1 && Mod[First[#1], 4] == 1 &] &] (* Amiram Eldar, Mar 08 2024 *)
  • PARI
    isok(n) = if (! issquarefree(n), return (0)); if (n > 1, f = factor(n); for (i=1, #f~, if (f[i, 1] % 4 != 1, return (0)))); 1

Formula

The number of terms that do not exceed x is ~ c * x / sqrt(log(x)), where c = A088539 * sqrt(A175647) / Pi = 0.3097281805... (Jakimczuk, 2024, Theorem 3.10, p. 26). - Amiram Eldar, Mar 08 2024

A244659 Decimal expansion of 4*K/Pi, a constant appearing in the asymptotic evaluation of the number of non-hypotenuse numbers not exceeding a given bound, where K is the Landau-Ramanujan constant.

Original entry on oeis.org

9, 7, 3, 0, 3, 9, 7, 7, 6, 7, 7, 1, 7, 8, 1, 9, 9, 4, 2, 5, 4, 4, 9, 1, 2, 8, 1, 1, 7, 3, 6, 4, 6, 8, 1, 1, 0, 7, 6, 3, 4, 3, 9, 6, 3, 4, 7, 9, 0, 8, 2, 4, 2, 7, 3, 7, 6, 3, 0, 9, 0, 2, 1, 6, 3, 2, 5, 9, 7, 1, 0, 1, 8, 6, 4, 1, 5, 1, 6, 3, 4, 2, 9, 5, 2, 0, 4, 0, 4, 2, 0, 7, 6, 2, 1, 3, 8, 7, 4, 2
Offset: 0

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			0.973039776771781994254491281173646811...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.3 Landau-Ramanujan Constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 100; LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1-2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k-1), {k, 1, K}]/Sqrt[2], n]]; K = LandauRamanujan[digits+5]; RealDigits[4*K/Pi, 10, digits] // First (* after Victor Adamchik *)

A330890 Decimal expansion of Product_{prime p == 1 (mod 4)} (1 + 1/p^2)/(1 - 1/p^2).

Original entry on oeis.org

1, 1, 1, 3, 6, 8, 0, 6, 1, 8, 1, 3, 2, 3, 1, 6, 4, 8, 8, 8, 6, 1, 8, 9, 1, 9, 4, 1, 1, 9, 8, 3, 1, 9, 9, 1, 3, 6, 5, 6, 5, 8, 2, 7, 5, 4, 7, 8, 7, 7, 5, 9, 2, 3, 2, 4, 4, 5, 6, 1, 1, 5, 1, 6, 3, 4, 6, 7, 5, 6, 7, 2, 7, 7, 2, 5, 4, 6, 6, 5, 1, 0, 7, 5, 0, 3, 6, 6, 2, 7, 6, 5, 2, 7, 7, 4, 1, 8, 1, 5, 8, 8, 1, 7, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Examples

			1.1136806181323164888618919411983199136565827547877592324456...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[12*Catalan/Pi^2, 10, 120][[1]]
  • PARI
    12*Catalan/Pi^2 \\ Michel Marcus, May 01 2020

Formula

Equals 12*G/Pi^2, where G is Catalan's constant (A006752).
Equals A243380 / A088539.
Equals Sum_{q in A004613} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals (1 + w)/(1 - w), where w = tanh(Sum_{prime p == 1 (mod 4)} arctanh(1/p^2)) = 0.0537832523783875... Physical interpretation: the constant w is the relativistic sum of the velocities c/p^2 over all Pythagorean primes p, in units where the speed of light c = 1. - Thomas Ordowski, Nov 14 2024

Extensions

Name edited by Thomas Ordowski, Nov 15 2024
Previous Showing 11-13 of 13 results.