cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A237361 Numbers n of the form n = Phi_5(p) (for prime p) such that Phi_5(n) is also prime.

Original entry on oeis.org

4435770414505, 30562950873505, 32152890387805, 60700878873905, 936037312559305, 1279875801783805, 3780430049614405, 6055088920612205, 10370026462436905, 12160851727605005, 16956369914710105, 18746881534017005, 20813869508536105, 30740855019988405
Offset: 1

Views

Author

Derek Orr, Feb 06 2014

Keywords

Comments

Phi_5(x) = x^4 + x^3 + x^2 + x + 1 is the fifth cyclotomic polynomial, see A053699.
All numbers are congruent to 5 mod 100.
The definition requires p to be prime, Phi_5(p) does not need to be prime, but Phi_5(Phi_5(p)) must be prime.

Examples

			4435770414505 = 1451^4+1451^3+1451^2+1451+1 (1451 is prime), and 4435770414505^4+4435770414505^3+4435770414505^2+4435770414505+1 = 387147304469214558406348338836395337085545589397781 is prime. Thus, 4435770414505 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    forprime(p=2,1e7, k=polcyclo(5,p) ; if( ispseudoprime(polcyclo(5,k)), print1(k", "))) \\ Charles R Greathouse IV, Feb 07 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
    

A182384 Primes of the form k^5 + k^4 + k^3 + k^2 + k - 1.

Original entry on oeis.org

61, 37447, 111109, 271451, 1118479, 2000717, 5399041, 8308823, 17847787, 34636831, 133878821, 318877549, 790779659, 1475634067, 1705057969, 2924670137, 5337978007, 12284650663, 14830601147, 23073112417, 40380555731, 50414324357, 372777302329, 766855252057
Offset: 1

Views

Author

Alex Ratushnyak, Apr 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[n^5 + n^4 + n^3 + n^2 + n - 1, {n, 0, 300}], PrimeQ] (* T. D. Noe, Apr 27 2012 *)

A237445 Primes p such that f(f(p)) is prime, where f(x) = x^4 + x^3 + x^2 + x + 1 = A053699(x).

Original entry on oeis.org

1451, 2351, 2381, 2791, 5531, 5981, 7841, 8821, 10091, 10501, 11411, 11701, 12011, 13241, 15271, 15331, 16691, 17231, 18341, 18671, 19891, 20981, 21911, 23071, 23131, 23561, 23741, 24061, 25321, 27361, 29221, 30851, 30941, 31271, 32141, 33931
Offset: 1

Views

Author

Derek Orr, Feb 08 2014

Keywords

Comments

All numbers are congruent to 1 mod 10.

Examples

			1451 is prime and f(f(1451)) = 387147304469214558406348338836395337085545589397781 is prime. Thus, 1451 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    f(x)=x^4+x^3+x^2+x+1;forprime(p=1,35000,ispseudoprime(f(f(p)))&&print1(p",")) \\ M. F. Hasler, Feb 09 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
    
Previous Showing 11-13 of 13 results.