cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A215507 G.f. satisfies: A(x) = 1 + x*A(x)^5*A(x*A(x)^5).

Original entry on oeis.org

1, 1, 6, 56, 661, 9141, 142522, 2448544, 45653707, 913964706, 19491269046, 440154262428, 10475920613965, 261802864005533, 6848792691398646, 187061918111607286, 5322557388634585229, 157460119081722965460, 4834825995463338092669, 153840302781842431823086
Offset: 0

Views

Author

Paul D. Hanna, Aug 13 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 56*x^3 + 661*x^4 + 9141*x^5 + 142522*x^6 +...
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A^4*B;
B = A*(1 + x*B^4*C);
C = B*(1 + x*C^4*D);
D = C*(1 + x*D^4*E);
E = D*(1 + x*E^4*F); ...
where B(x) = A(x)*A(x*A(x)^5), C(x) = A(x)*B(x*A(x)^5),  D(x) = A(x)*C(x*A(x)^5), ...
Expansions of a few of the functions described above begin:
B(x) = 1 + 2*x + 18*x^2 + 229*x^3 + 3480*x^4 + 59466*x^5 +...
C(x) = 1 + 3*x + 36*x^2 + 585*x^3 + 11055*x^4 + 230211*x^5 +...
D(x) = 1 + 4*x + 60*x^2 + 1190*x^3 + 27040*x^4 + 669426*x^5 +...
E(x) = 1 + 5*x + 90*x^2 + 2110*x^3 + 56145*x^4 + 1616151*x^5 +...
ALTERNATE GENERATING METHOD.
Suppose functions A=A(x), B=B(x), C=C(x), etc., satisfy:
A = 1 + x*A^5*B,
B = 1 + x*(A*B)^5*C,
C = 1 + x*(A*B*C)^5*D,
D = 1 + x*(A*B*C*D)^5*E, etc.,
then B(x) = A(x*A(x)^5), C(x) = B(x*A(x)^5), D(x) = C(x*A(x)^5), etc.,
where A(x) = 1 + x*A(x)^5*A(x*A(x)^5) is the g.f. of this sequence.
Expansions of a few of the functions described above begin:
B(x) = 1 + x + 11*x^2 + 156*x^3 + 2541*x^4 + 45571*x^5 + 881403*x^6 +...
C(x) = 1 + x + 16*x^2 + 306*x^3 + 6446*x^4 + 145201*x^5 +...
D(x) = 1 + x + 21*x^2 + 506*x^3 + 13126*x^4 + 358281*x^5 +...
E(x) = 1 + x + 26*x^2 + 756*x^3 + 23331*x^4 + 750061*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 0; Do[A[x] = 1 + x*A[x]^5 * A[x*A[x]^5] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 31 2025 *)
  • PARI
    {a(n)=local(A=1+x); for(i=0, n, A=1+x*A^5*subst(A, x, x*A^5+x*O(x^n))); polcoeff(A, n)}
    
  • PARI
    /* a(n) = [x^n] (1+x*A(x))^(5*n+1)/(5*n+1): */
    {a(n)=local(A=1+x); for(i=0, n, A=sum(m=0,n,polcoeff((1+x*A+x*O(x^m))^(5*m+1)/(5*m+1),m)*x^m)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(5*n+m, k)/(5*n+m)*a(n-k, k))))}
    for(n=0,41,print1(a(n),", "))

Formula

a(n) = coefficient of x^n in (1+x*A(x))^(5*n+1)/(5*n+1) where A(x) = Sum_{n=0} a(n)*x^n.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*binomial(5*n+m,k)/(5*n+m) * a(n-k,k).
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n)^4*F(x,n+1)) for n>0 with F(x,0)=1.

A182224 G.f. satisfies: A(x) = 1 + x*A(x) * A(A(x) - 1).

Original entry on oeis.org

1, 1, 2, 7, 35, 220, 1622, 13480, 123212, 1218694, 12898292, 144890911, 1717072304, 21367220392, 278174617499, 3777454890226, 53372573914742, 783004637781214, 11905653060557285, 187325244287570431, 3045651218248945454, 51103551998888439679, 883901254149820933025
Offset: 0

Views

Author

Paul D. Hanna, Apr 19 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 35*x^4 + 220*x^5 + 1622*x^6 +...
such that A(x) = 1 + x*A(x)*A(A(x)-1) where:
A(A(x)-1) = 1 + x + 4*x^2 + 22*x^3 + 148*x^4 + 1147*x^5 + 9901*x^6 +...
Let G(x) satisfy G(x/A(x)) = x, then G(x)/x = g.f. of A088717, where
G(x) = x + x^2 + 3*x^3 + 14*x^4 + 84*x^5 + 596*x^6 + 4785*x^7 +...
A(G(x)) = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 596*x^5 + 4785*x^6 +...
A(x/(1+G(x))) = 1 + x + x^2 + 3*x^3 + 14*x^4 + 84*x^5 + 596*x^6 + 4785*x^7 +...
G(x*A(x)) = x + 2*x^2 + 7*x^3 + 35*x^4 + 220*x^5 + 1622*x^6 +...
		

Crossrefs

Cf. A088717.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A*subst(A,x,A-1)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+subst(serreverse(x/A),x,x*A)+x*O(x^n));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

Given g.f. A(x), define G(x) by G(x)/x = g.f. of A088717, then G(x) satisfies:
(1) G(x) = x + x*G(G(x)^2/x),
(2) G(x) = Series_Reversion(x/A(x)),
(3) G(x) = x/Series_Reversion(x*A(x)) - 1,
(4) G(x) = x*A(G(x)),
(5) G(x) = A(x/(1+G(x))) - 1,
(6) A(x) = 1 + G(x*A(x)).
Previous Showing 11-12 of 12 results.