cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A154944 Primes p such that (p-1)*p*(p+1)-p+2 and (p-1)*p*(p+1)+p-2 are primes.

Original entry on oeis.org

19, 37, 67, 151, 367, 859, 1471, 2791, 2971, 3061, 4357, 4447, 4507, 6367, 7159, 7237, 7591, 8311, 8647, 11617, 12211, 12601, 13249, 14947, 15271, 15661, 16699, 18097, 19777, 20149, 20347, 20947, 21019, 22741, 23311, 23857, 24019, 25867, 26701
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p+2]&&PrimeQ[(p-1)*p*(p+1)+p-2],AppendTo[lst,p]],{n,8!}];lst

A155010 Primes p such that (p-a)*(p+a)-+a*p and (p-b)*(p+b)-+b*p are primes, a=2,b=3.

Original entry on oeis.org

7, 37, 587, 28703, 35677, 36857, 99367, 326707, 361687, 578167, 613573, 619007, 656407, 688783, 702203, 713467, 874823, 922027, 940573, 1045763, 1057907, 1244687, 1371157, 1419697, 1555187, 1665767, 1687187, 1687327, 1799453
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p]&&PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,9!}];lst
    Select[Prime[Range[200000]],AllTrue[Flatten[{(#-2)(#+2)+{2#,-2#},(#-3)(#+3)+ {3#,-3#}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2015 *)
Previous Showing 21-22 of 22 results.