cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A089668 a(n) = S2(n,5), where S2(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^2.

Original entry on oeis.org

0, 4, 521, 17136, 320716, 4356560, 48024786, 456843520, 3893995184, 30487086144, 223052123830, 1544098243424, 10208488021176, 64917814932256, 399310478637476, 2386386863086080, 13906802738650816, 79261768839946496, 442921922267640894
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S2(n, t): A003583 (t=0), A089664 (t=1), A089665 (t=2), A089666 (t=3), A089667 (t=4), this sequence (t=5).

Programs

  • Mathematica
    Table[(1/2)*(n*(21*n^5+61*n^4+55*n^3+15*n^2-28*n+4)*4^(n-3) -(n-1)*(3*n-5)*(n^2 + 4*n-6)*Binomial[n+1, 3]*CatalanNumber[n-2]), {n, 0, 40}] (* G. C. Greubel, May 25 2022 *)
  • SageMath
    [(1/2)*(n*(21*n^5 + 61*n^4 + 55*n^3 + 15*n^2 - 28*n + 4)*4^(n-3) - (n-1)*(3*n-5)*(n^2 + 4*n - 6)*binomial(n+1, 3)*catalan_number(n-2)) for n in (0..40)] # G. C. Greubel, May 25 2022

Formula

a(n) = (1/128)*n*(21*n^5 + 61*n^4 + 55*n^3 + 15*n^2 - 28*n + 4)*4^n - (1/48)*n^2*(n-1)^2*(3*n-5)*(n^2 + 4*n - 6)*binomial(2*n, n)/((2*n-1)*(2*n-3)). (See Wang and Zhang, p. 338)
From G. C. Greubel, May 25 2022: (Start)
a(n) = (1/2)*(n*(21*n^5 + 61*n^4 + 55*n^3 + 15*n^2 - 28*n + 4)*4^(n-3) - (n-1)*(3*n-5)*(n^2 + 4*n - 6)*binomial(n+1, 3)*Catalan(n-2)).
G.f.: x*( 4*(1 + 103*x + 1012*x^2 + 1688*x^3 + 512*x^4 - 256*x^5) - 3*x*(1 + 54*x + 26*x^2 - 156*x^3 - 104*x^4 + 320*x^5 -240*x^6)*sqrt(1-4*x) )/(1-4*x)^7. (End)

A089670 a(n) = S3(n,2), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 283, 6044, 101360, 1470640, 19361174, 237684384, 2768042208, 30935313600, 334481353690, 3519672963752, 36206551801264, 365363625058432, 3626585989411280, 35485636769545600, 342894590805622656, 3276865150482420480, 31008279252965786178
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), this sequence (t=2), A089671 (t=3), A089672 (t=4).

Programs

  • Mathematica
    a[n_]:= a[n]= Sum[k^2*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A089670(n): return sum(k^2*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089670(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k^2 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 7/24 * 8^n * n^3 * (1 - 9/(14*sqrt(Pi*n)) + (12/7 - 3^(3/2)/(14*Pi))/n). - Vaclav Kotesovec, May 27 2022

A089671 a(n) = S3(n,3), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 539, 16632, 364042, 6510160, 101817234, 1447146512, 19144522160, 239513659776, 2865559784050, 33052451375152, 369790434398988, 4031805422883680, 42996629236138928, 449821323139340160, 4627609615665499456, 46907404618252667392, 469254490696475078130
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), A089670 (t=2), this sequence (t=3), A089672 (t=4).

Programs

  • Mathematica
    a[n_]:= a[n]= Sum[k^3*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A089671(n): return sum(k^3*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089671(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k^3 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 15 * 2^(3*n-6) * n^4 * (1 - 2/(5*sqrt(Pi*n)) + (2 - sqrt(3)/(5*Pi))/n). - Vaclav Kotesovec, May 27 2022

A089672 a(n) = S3(n,4), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 1051, 47024, 1343372, 29595904, 549599246, 9039987264, 135800368320, 1901346478080, 25165027679242, 318105020914208, 3870088369412824, 45584244411107584, 522235732874214800, 5840992473138691072, 63970901725419781632, 687749464543749095424, 7273214936974305201570
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), A089670 (t=2), A089671 (t=3), this sequence (t=4).

Programs

  • Maple
    S3:= (n, t) -> add(k^t*add(binomial(n, j), j = 0..k)^3, k = 0..n);
    seq(S3(n, 4), n = 0..40);
  • Mathematica
    a[n_]:= a[n]= Sum[k^4*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A089672(n): return sum(k^4*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089672(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k^4 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 31 * 2^(3*n - 5) * n^5 / 5 * (1 - 15/(62*sqrt(Pi*n)) + (75 - 5*sqrt(3)/Pi) / (31*n)). - Vaclav Kotesovec, May 27 2022
Previous Showing 11-14 of 14 results.