cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A116938 Expansion of e^2 in base 2.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0
Offset: 3

Views

Author

Jonathan Vos Post, Mar 21 2006

Keywords

Examples

			111.010001000000 (base 2) ~ 7.389056098930650... (base 10) ~ e^2. 100 decimal places precision here.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Eli Maor, e: The Story of a Number, Princeton Univ. Press, 1994.

Crossrefs

Cf. A001113 (e), A072334 (e^2), A090142 (e^2-e).
Cf. A090143 (e^3-2e^2+e/2), A089139 (e^4-3e^3+2e^2-e/6), A090143 (e^3-2e^2+e/2).
Cf. A001671 (powers of e rounded up), A107586 (powers of e^(1/e) rounded up).

Programs

A370563 Decimal expansion of expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed e.

Original entry on oeis.org

6, 1, 0, 4, 0, 0, 2, 3, 4, 1, 3, 6, 3, 7, 5, 4, 1, 5, 1, 6, 6, 7, 2, 3, 2, 9, 0, 2, 2, 7, 5, 1, 4, 7, 6, 5, 9, 5, 5, 9, 1, 9, 4, 2, 6, 2, 6, 3, 3, 1, 5, 0, 2, 2, 3, 6, 6, 2, 4, 3, 5, 3, 6, 6, 3, 4, 7, 7, 3, 3, 3, 9, 7, 6, 5, 6, 6, 3, 0, 1, 9, 0, 3, 1, 6, 3
Offset: 1

Views

Author

Clark Kimberling, May 01 2024

Keywords

Examples

			6.104002341363754151667232902275147659559194262...
		

Crossrefs

Programs

  • Mathematica
    u=N[E^(E - 2)*(4 + (E - 2)*E)/2, 100]; First[RealDigits[u]]
    N[Mean[Table[Length[NestWhileList[# + RandomReal[1] &, 0, #1 < E &]] - 1, 10^5]]] (* sample mean *)  (* Peter J. C. Moses, Apr 30 2024 *)

Formula

Equals e*(e-2)*(4 +(e-2)*e)/2.
Previous Showing 11-12 of 12 results.