cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A355893 Let A090252(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A090252(n); a(1)=0 by convention.

Original entry on oeis.org

0, 1, 10, 100, 2, 1000, 20, 10000, 100000, 1000000, 3, 10000000, 100000000, 200, 1010, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 4, 10000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2022

Keywords

Comments

A090252 and A354169 are similar in many ways. This sequence and A355892 illustrate this.
This compressed format only make sense if all e_i are less than 10, that is, for n <= 24574.
It is believed that 6 does not appear in A090252, so 11 is missing from the present sequence.

Examples

			The initial terms of A090252 are:
1 -> 0
2 = 2^1 ->1
3 = 2^0 3^1 -> 10
5 = 2^0 3^0 5^1 -> 100
4 = 2^2 -> 2
7 = 2^0 3^0 5^0 7^1 -> 1000
9 = 2^0 3^2 -> 20
...
The terms, right-justified, for comparison with A355892, are:
.1 ...................................0
.2 ...................................1
.3 ..................................10
.4 .................................100
.5 ...................................2
.6 ................................1000
.7 ..................................20
.8 ...............................10000
.9 ..............................100000
10 .............................1000000
11 ...................................3
12 ............................10000000
13 ...........................100000000
14 .................................200
15 ................................1010
16 ..........................1000000000
17 .........................10000000000
18 ........................100000000000
19 .......................1000000000000
20 ......................10000000000000
21 .....................100000000000000
22 ....................1000000000000000
23 ...................................4
24 ...................10000000000000000
...
		

Crossrefs

See A354150 for indices of powers of 2 in A090252.

Programs

  • Mathematica
    nn = 24, s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; nn, -1]]; f[n_] := If[n == 1, 0, Function[g, FromDigits@ Reverse@ ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[f[s[[#]]] &, nn] (* Michael De Vlieger, Aug 24 2022 *)

Formula

a(n) = A054841(A090252(n)). - Stefano Spezia, Aug 24 2022

A354151 Lengths of successive runs of primes in A090252.

Original entry on oeis.org

3, 1, 3, 2, 7, 5, 1, 14, 11, 2, 1, 29, 22, 5, 2, 58, 1, 45, 1, 1, 10, 1, 5, 117, 3, 90, 2, 2, 21, 2, 11, 1, 1, 39, 195, 7, 181, 5, 5, 1, 42, 7, 23, 2, 3, 79, 391, 14, 1, 362, 1, 11, 1, 1, 11, 1, 1, 3, 1, 85, 15, 46, 5, 7, 158, 782, 1, 29, 1, 3, 1, 725, 1, 1, 2, 22, 2, 2, 23, 2, 3, 7, 2, 170, 31, 93, 1, 1, 11, 15, 317, 1, 1089, 475, 2, 58, 1, 1, 3, 7, 2, 1450
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2022

Keywords

Examples

			A090252 begins 1, 2, 3, 5, 4, 7, 9, 11, 13, 17, 8, 19, 23, 25, 21, 29, 31, ... which, writing N for a nonprime and P for a prime, is NPPPNPNPPPNPPNPP...  The runs of primes have lengths 3, 1, 3, 2, ...
		

Crossrefs

Programs

  • Python
    from math import gcd, prod
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        alst, aset, mink, run = [1], {1}, 2, 0
        for n in count(2):
            k, s = mink, n - n//2
            prodall = prod(alst[n-n//2-1:n-1])
            while k in aset or gcd(prodall, k) != 1: k += 1
            alst.append(k); aset.add(k)
            if isprime(k): run += 1
            elif run > 0: yield run; run = 0
            while mink in aset: mink += 1
    print(list(islice(agen(), 45))) # Michael S. Branicky, May 28 2022

A354162 Products of exactly two distinct odd primes in A090252, in order of appearance.

Original entry on oeis.org

21, 55, 85, 57, 161, 319, 217, 481, 205, 731, 517, 159, 1121, 1403, 871, 355, 1241, 869, 2407, 1691, 413, 3007, 2323, 1391, 4033, 565, 5207, 2227, 5891, 6533, 4321, 453, 1007, 623, 4867, 2231, 6161, 2119, 11189, 6401, 12709, 7421, 2159, 9563, 8213, 1507, 15247, 9259, 4031, 12367, 597, 2869, 11183, 1561, 13393, 7099, 3611, 14213, 24823
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2022

Keywords

Comments

Odd terms in A354160. - Chai Wah Wu, May 31 2022

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from collections import deque
    from math import gcd, lcm
    from sympy import factorint
    def A354162_gen(): # generator of terms
        aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
        while True:
            for m in count(c):
                if m not in aset and gcd(m,b) == 1:
                    if m % 2 and len(fm := factorint(m)) == sum(fm.values()) == 2:
                        yield m
                    aset.add(m)
                    aqueue.append(m)
                    if f: aqueue.popleft()
                    b = lcm(*aqueue)
                    f = not f
                    while c in aset:
                        c += 1
                    break
    A354162_list = list(islice(A354162_gen(),25)) # Chai Wah Wu, May 31 2022

A354163 Index of A354162(n) in A090252.

Original entry on oeis.org

15, 29, 59, 63, 65, 121, 131, 193, 239, 241, 243, 255, 257, 265, 387, 479, 483, 487, 489, 515, 527, 529, 531, 775, 777, 959, 961, 967, 969, 977, 979, 1023, 1031, 1055, 1059, 1063, 1143, 1551, 1553, 1555, 1921, 1923, 1935, 1937, 1939, 1951, 1953, 1955, 1959, 1961, 2047, 2063, 2064, 2111, 2113, 2119, 2127, 2288, 3073, 3105, 3107, 3111, 3113, 3839
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2022

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from collections import deque
    from math import gcd, lcm
    from sympy import factorint
    def A354163_gen(): # generator of terms
        aset, aqueue, c, b, f, i = {1}, deque([1]), 2, 1, True, 1
        while True:
            for m in count(c):
                if m not in aset and gcd(m,b) == 1:
                    i += 1
                    if m % 2 and len(fm := factorint(m)) == sum(fm.values()) == 2:
                        yield i
                    aset.add(m)
                    aqueue.append(m)
                    if f: aqueue.popleft()
                    b = lcm(*aqueue)
                    f = not f
                    while c in aset:
                        c += 1
                    break
    A354163_list = list(islice(A354163_gen(),25)) # Chai Wah Wu, May 31 2022

A355012 Prime powers (p^k, k >= 2) in A090252 in order of appearance.

Original entry on oeis.org

4, 9, 8, 25, 16, 27, 49, 121, 32, 169, 125, 289, 81, 361, 529, 64, 841, 343, 961, 128, 1369, 1681, 1849, 2209, 243, 2809, 3721, 4489, 5041, 5329, 1331, 6241, 6889, 3481, 256, 10609, 11449, 11881, 625, 12769, 7921, 9409, 10201, 2197, 26569, 32041, 32761, 16129
Offset: 1

Views

Author

Michael De Vlieger, Jun 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 4000, -1]], CompositeQ[#] && PrimePowerQ[#] &]

A355013 Index of A355012(n) in A090252.

Original entry on oeis.org

5, 7, 11, 14, 23, 31, 32, 60, 95, 96, 119, 120, 127, 128, 132, 191, 244, 263, 264, 383, 388, 480, 484, 488, 511, 512, 571, 776, 960, 968, 975, 976, 980, 1056, 1535, 1536, 1552, 1556, 1919, 1920, 2112, 2128, 2287, 3103, 3104, 3844, 3848, 3872, 3875, 3904, 3920
Offset: 1

Views

Author

Michael De Vlieger, Jun 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Position[Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 4000, -1]], _?(CompositeQ[#] && PrimePowerQ[#] &)][[All, 1]]

A354149 Odd numbers in A090252 in order of appearance.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 21, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 55, 79, 27, 49, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 85, 121, 223, 227, 57, 229, 161, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2022

Keywords

Crossrefs

Programs

  • Python
    from math import gcd, prod
    from itertools import count, islice
    def agen(): # generator of terms
        alst, aset, mink = [1], {1}, 2; yield 1
        for n in count(2):
            k, s = mink, n - n//2
            prodall = prod(alst[n-n//2-1:n-1])
            while k in aset or gcd(prodall, k) != 1: k += 1
            alst.append(k); aset.add(k)
            if k%2 == 1: yield k
            while mink in aset: mink += 1
    print(list(islice(agen(), 77))) # Michael S. Branicky, May 23 2022

A354150 Index of 2^n in A090252, or -1 if 2^n does not appear.

Original entry on oeis.org

1, 2, 5, 11, 23, 95, 191, 383, 1535, 6143, 24575, 49151, 196607, 786431, 3145727, 12582911, 50331647, 201326591, 805306367
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2022

Keywords

Comments

It is conjectured (see A090252) that the indices of even terms in A090252 are {3*2^i-1, i >= 0} (A083329), so the positive terms of the present sequence should be a subsequence of A083329.
For n = 1,...,18, the terms are 3*2^k - 1 for k = 0,1,2,3,5,6,7,9,11,13,14,16,18,20,22,24,26,28. Will the formula a(n) = 3*2^(2*n-8)-1 hold for all n >= 11? This appears to be yet another example of the influence of A029744 on A090252 and A354691.- N. J. A. Sloane, Aug 24 2022

Crossrefs

Cf. A090252, A083329, A354148, A354149, A354255 (even terms in A090252).
See also A029744, A354169.

Extensions

a(10) from Michael S. Branicky, May 27 2022
a(11)-a(14) from Michael S. Branicky, Jun 01 2022 using gzipped b-file at A090252
a(15)-a(18) from Jinyuan Wang, Jul 15 2022

A354154 a(1) = 0; for n>1, a(n) = prime(n-1) - A090252(n).

Original entry on oeis.org

0, 0, 0, 0, 3, 4, 4, 6, 6, 6, 21, 12, 14, 16, 22, 18, 22, 22, 20, 24, 24, 20, 63, 24, 28, 30, 30, 30, 52, 30, 86, 78, 48, 48, 42, 48, 48, 50, 54, 54, 46, 48, 44, 52, 44, 46, 173, 54, 60, 60, 56, 54, 58, 50, 58, 60, 64, 58, 186, 156, 58, 56, 236, 78, 150, 80, 78, 90, 86, 90, 86, 84, 88, 90, 92, 96, 90, 82, 86, 88, 92, 88, 84, 84, 84, 86, 84, 82, 84
Offset: 1

Views

Author

N. J. A. Sloane, May 28 2022

Keywords

Comments

Theorem: a(n) >= 0 for all n.

Examples

			A090252 begins
  1, 2, 3, 5, 4,  7,  9, 11, 13, ...
and we subtract these numbers from
  1, 2, 3, 5, 7, 11, 13, 17, 19, ...
to get
  0, 0, 0, 0, 3,  4,  4,  6,  6, ...
		

Crossrefs

Cf. A090252.

Programs

  • Python
    from math import gcd, prod
    from sympy import isprime, nextprime
    from itertools import count, islice
    def agen(): # generator of terms
        alst, aset, mink, p = [1], {1}, 2, 1
        yield 0
        for n in count(2):
            k, s, p = mink, n - n//2, nextprime(p)
            prodall = prod(alst[n-n//2-1:n-1])
            while k in aset or gcd(prodall, k) != 1: k += 1
            alst.append(k); aset.add(k); yield p - k
            while mink in aset: mink += 1
    print(list(islice(agen(), 89))) # Michael S. Branicky, May 28 2022

A354764 Squarefree kernel of A090252(n) (cf. A007947).

Original entry on oeis.org

1, 2, 3, 5, 2, 7, 3, 11, 13, 17, 2, 19, 23, 5, 21, 29, 31, 37, 41, 43, 47, 53, 2, 59, 61, 67, 71, 73, 55, 79, 3, 7, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 26, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 85, 11, 223, 227, 57, 229, 161, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2022

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from math import prod, gcd, lcm
    from collections import deque
    from sympy import primefactors
    def A354764_gen(): # generator of terms
        aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
        yield 1
        while True:
            for m in count(c):
                if m not in aset and gcd(m,b) == 1:
                    yield prod(primefactors(m))
                    aset.add(m)
                    aqueue.append(m)
                    if f: aqueue.popleft()
                    b = lcm(*aqueue)
                    f = not f
                    while c in aset:
                        c += 1
                    break
    A354764_list = list(islice(A354764_gen(),20)) # Chai Wah Wu, Jun 18 2022
Previous Showing 11-20 of 38 results. Next