cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A304108 Numbers n such that the (0,1)-polynomial encoded in binary expansion of n has at least one duplicated irreducible divisor when the factorization is done in polynomial ring GF(2)[X].

Original entry on oeis.org

4, 5, 8, 10, 12, 15, 16, 17, 20, 21, 24, 27, 28, 30, 32, 34, 36, 39, 40, 42, 44, 45, 48, 51, 52, 54, 56, 57, 60, 63, 64, 65, 68, 69, 72, 75, 76, 78, 80, 81, 84, 85, 88, 90, 92, 95, 96, 99, 100, 102, 104, 105, 107, 108, 112, 114, 116, 119, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 141, 144, 147, 148, 150, 151, 152, 153, 156, 160, 162
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

Positions of zeros in A091219 and A304109. Numbers n such that A091221(n) < A091222(n).

Examples

			4 is present as 4 = A048720(2,2) = A048720(A014580(1), A014580(1)).
5 is present as 5 = A048720(3,3) = A048720(A014580(2), A014580(2)).
10 is present as 10 = A048720(2,A048720(3,3)).
		

Crossrefs

Cf. A304107 (complement).
Cf. also A013929.

Programs

  • PARI
    isA304108(n) = { my(fm=factor(Pol(binary(n))*Mod(1, 2))); for(k=1, #fm~, if(fm[k, 2] > 1, return(1))); (0); };
    k=0; n=0; while(k<100, n++; if(isA304108(n), k++; print1(n,", ")));

A206719 Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2012

Keywords

Comments

The polynomials having coefficients in {0,1} are enumerated as in A206074 (and A206073).

Examples

			p(1,n) = 1, so a(1)=0
p(2,n) = x, so a(2)=1
p(6,n) = x(1+x), so a(6)=2
p(18,n) = x(x+1)(1-x+x^2), so a(18)=3
p(90,n) = x(1+x)(1+x^2)(1-x+x^2), so a(90)=4
		

Crossrefs

Programs

  • Mathematica
    t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]
    TableForm[Table[{n, p[n, x],
       FactorList[p[n, x]], -1 + Length[FactorList[p[n, x]]]}, {n, 1, 9}]]
    Table[Length[FactorList[p[n, x]]], {n, 1, 120}]
  • PARI
    A206719(n) = { my(f = factor(Pol(binary(n)))); (#f~); }; \\ Antti Karttunen, Dec 16 2017

A136378 Number of distinct irreducible polynomials dividing A036284(n), when it is considered as a GF(2)[X]-polynomial.

Original entry on oeis.org

2, 2, 3, 4, 5, 5, 5, 7, 7, 10, 15, 10, 10, 12, 15, 11
Offset: 0

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

a(n) = A091221(A036284(n)).

A376932 a(n) is the index of the first GF(2)[X] polynomial that has n distinct irreducible factors.

Original entry on oeis.org

1, 2, 6, 18, 166, 1806, 20382, 272706, 8323326, 158143194, 4319806194, 139715547110, 4563596609414, 154716297384250, 6051527318503338, 315946019303255670, 18477283150919171654, 1191953715632050834242, 76457609628854745786262, 4838004466153152832995822, 312401901306255000752991994, 20039165126917559409941672886
Offset: 0

Views

Author

Robert Israel, Oct 11 2024

Keywords

Comments

a(n) is the least k such that A091221(k) = n.

Examples

			a(3) = 18 because the 18th GF(2)[X] polynomial is X^4 + X = X * (X + 1) * (X^2 + X + 1) with 3 distinct irreducible factors over GF(2).
		

Crossrefs

Cf. A091221.

Programs

  • Maple
    pol:= proc(x) local L,i;
      L:= convert(x,base,2);
      add(L[i]*X^(i-1),i=1..nops(L));
    end proc:
    for m from 1 to 10 do
      IP[m]:= select(t -> Irreduc(pol(t)) mod 2, [seq(x,x=2^m..2^(m+1)-1)]);
    od:
    nIP:= [seq(nops(IP[m]),m=1..10)]:
    psnIP:= ListTools:-PartialSums(nIP):
    f:= proc(n) local k,P0,r, xmin, x, i, s, P;
      for k from 1 while n > psnIP[k] do od:
      P0:= expand(mul(convert(map(pol,IP[i]),`*`),i=1..k-1)) mod 2;
      if k = 1 then r:= n else r:= n - psnIP[k-1] fi;
      xmin:= infinity;
      for s in combinat:-choose(IP[k],r) do
        P:= expand(P0 * mul(pol(i),i=s)) mod 2;
        x:= eval(P,X=2);
        xmin:= min(xmin, x);
      od;
      xmin
    end proc:
    seq(f(i),i=0..25);
Previous Showing 11-14 of 14 results.