cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A238186 Primes with odd Hamming weight that as polynomials over GF(2) are reducible.

Original entry on oeis.org

79, 107, 127, 151, 173, 179, 181, 199, 223, 227, 233, 251, 271, 307, 331, 367, 409, 421, 431, 439, 443, 457, 491, 521, 541, 569, 577, 641, 653, 659, 709, 727, 733, 743, 809, 823, 829, 919, 941, 947, 991, 997, 1009, 1021, 1087, 1109, 1129, 1171, 1187, 1201, 1213, 1231, 1249, 1259, 1301, 1321, 1327, 1361, 1373
Offset: 1

Views

Author

Joerg Arndt, Feb 19 2014

Keywords

Comments

Subsequence of A091209 (see comments there).

Examples

			79 is a term because 79 = 1001111_2 which corresponds to the polynomial x^6 + x^3 + x^2 + x + 1, but over GF(2) we have x^6 + x^3 + x^2 + x + 1 = (x^2 + x + 1)*(x^4 + x^3 + 1). - _Jianing Song_, May 10 2021
		

Crossrefs

Intersection of A000069 and A091209.
Intersection of A027697 and A091242.
Equals the set difference of A027697 and A091206.

Programs

  • PARI
    forprime(p=2, 10^4, if( (hammingweight(p)%2==1) && ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) );

A246157 Reducible polynomials over GF(2) which are both odd and odious when coded in binary, or equally, which have an odd number of nonzero terms, with the constant term being 1.

Original entry on oeis.org

21, 35, 49, 69, 79, 81, 93, 107, 121, 127, 133, 151, 155, 161, 173, 179, 181, 199, 205, 217, 223, 227, 233, 251, 259, 261, 265, 271, 273, 279, 289, 295, 307, 309, 321, 327, 331, 339, 341, 345, 367, 381, 385, 403, 405, 409, 421, 431, 439, 443, 453, 457, 465, 475, 481, 491, 493, 511
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2014

Keywords

Comments

Numbers n such that (A000035(n) * A010060(n) * A091247(n)) = 1.
This sequence is closed with respect to the self-inverse permutation A193231, meaning that A193231(a(n)) is always either the same or some other term of this sequence.

Examples

			35 in binary is 100011, which encodes polynomial x^5 + x + 1, which factorizes as (x^2 + x + 1)(x^3 + x^2 + 1) over GF(2) (35 = A048720(7,13)), thus it is reducible in that polynomial ring.
Also, it is odd (the least significant bit is 1, that is, the constant term is not zero) and also odious, as there are three 1-bits (nonzero terms) present. Thus, 35 is included in this sequence.
		

Crossrefs

Intersection of A246156 and A246158.
Intersection of A091242 and A092246.

A260427 Binary codes for polynomials (with coefficients 0 or 1) that are irreducible over Q, but reducible over GF(2).

Original entry on oeis.org

5, 17, 23, 29, 43, 53, 69, 71, 77, 79, 81, 83, 89, 101, 107, 113, 121, 127, 139, 149, 151, 163, 169, 173, 179, 181, 197, 199, 205, 209, 223, 227, 233, 251, 257, 261, 263, 265, 269, 271, 275, 277, 281, 289, 293, 295, 305, 307, 311, 317, 321, 323, 327, 329, 331, 337, 339, 347, 349, 353, 359, 367, 373, 377, 383, 389, 401
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Crossrefs

Intersection of A091242 and A206074.
Subsequence: A260428.
Cf. also A260426, A206075.

Programs

  • Mathematica
    okQ[n_] := Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]];
    Select[Range[1000], okQ] (* Jean-François Alcover, Feb 06 2023 *)
  • PARI
    isA260427(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)));
    n = 0; i = 0; while(n < 65537, n++; if(isA260427(n), i++; write("b260427.txt", i, " ", n)));

A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).

Original entry on oeis.org

69, 77, 81, 121, 169, 205, 209, 261, 265, 275, 289, 295, 305, 321, 323, 327, 329, 339, 377, 405, 407, 437, 453, 473, 475, 481, 493, 517, 533, 551, 553, 559, 565, 575, 581, 583, 595, 625, 649, 667, 671, 689, 703, 707, 737, 747, 749, 755, 763, 767, 779, 781, 785, 805, 815, 833, 835, 851, 855, 861, 869, 893, 905
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Crossrefs

Intersection of A002808 and A260427.
Intersection of A091212 and A206074.
Intersection of A091242 and A206075.
Complement of A257688 in A206074.

Programs

  • Maple
    f:= proc(n) local L,p,x;
      if isprime(n) then return false fi;
      L:= convert(n,base,2);
      p:= add(L[i]*x^(i-1),i=1..nops(L));
      irreduc(p) and not (Irreduc(p) mod 2);
    end proc:
    select(f, [$2..10000]); # Robert Israel, Jul 27 2015
  • Mathematica
    okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]];
    Select[Range[1000], okQ] (* Jean-François Alcover, Feb 06 2023 *)
  • PARI
    isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n));
    n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n)));

A305903 Filter sequence for all such sequences b, for which b(A014580(k)) = constant for all k >= 3.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11, 7, 12, 13, 14, 15, 16, 7, 17, 18, 19, 20, 21, 7, 22, 23, 24, 25, 26, 7, 27, 28, 29, 30, 31, 7, 32, 33, 34, 7, 35, 36, 37, 38, 39, 7, 40, 41, 42, 43, 44, 45, 46, 7, 47, 48, 49, 7, 50, 7, 51, 52, 53, 54, 55, 7, 56, 57, 58, 59, 60, 7, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 7, 74, 75, 76, 7, 77, 78, 79, 80, 81, 7
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

Restricted growth sequence transform of A305900(A091203(n)).
This is GF(2)[X] analog of A305900.
For all i, j:
a(i) = a(j) => A304529(i) = A304529(j) => A305788(i) = A305788(j).
a(i) = a(j) => A268389(i) = A268389(j).

Crossrefs

Programs

  • PARI
    up_to = 1000;
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    prepare_v091226(up_to) = { my(v = vector(up_to), c=0); for(i=1,up_to,c += A091225(i); v[i] = c); (v); }
    v091226 = prepare_v091226(up_to);
    A091226(n) = if(!n,n,v091226[n]);
    A305903(n) = if(n<7,n,if(A091225(n),7,3+n-A091226(n)));

Formula

For n < 7, a(n) = n, for >= 7, a(n) = 7 when n is in A014580[3..] (= 7, 11, 13, 19, 25, 31, ...), and a(n) = 3+n-A091226(n) when n is in A091242[4..] (= 8, 9, 10, 12, 14, 15, ...).

A091243 Differences between consecutive reducible GF(2)[X]-polynomials.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Analogous to A073783.

Crossrefs

First differences of A091242. a(n) = A091244(n)+1.

A091254 Reducible polynomials over GF(2) in binary format.

Original entry on oeis.org

100, 101, 110, 1000, 1001, 1010, 1100, 1110, 1111, 10000, 10001, 10010, 10100, 10101, 10110, 10111, 11000, 11010, 11011, 11100, 11101, 11110, 100000, 100001, 100010, 100011, 100100, 100110, 100111, 101000, 101010, 101011, 101100
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Crossrefs

a(n) = A007088(A091242(n)). Cf. A058943.

A316970 Reducible binary polynomials P of degree n>0 with P dividing the polynomial X^(2^n-1)+1, evaluated at X=2 (pseudo-primes in the ring GF(2)[X]).

Original entry on oeis.org

83, 101, 127, 279, 443, 465, 1137, 1207, 1219, 1395, 1453, 1503, 1547, 1561, 1653, 1667, 1787, 1897, 1903, 1975, 2013, 4111, 4169, 4191, 4231, 4255, 4377, 4415, 4445, 4585, 4599, 4673, 4681, 4699, 4763, 4779, 4819, 4849, 4867, 4881, 4895, 4917, 5013, 5021, 5113, 5167, 5173, 5187, 5207, 5339, 5389, 5433, 5447
Offset: 1

Views

Author

Francois R. Grieu, Jul 17 2018

Keywords

Comments

If a binary polynomial P of degree n is irreducible, then demonstrably P divides the polynomial X^(2^n-1)+1.
All irreducible polynomials A014580 pass this test, requiring O(n^3) bit operations and O(n) bits with classical algorithms.
Polynomials which pass this test but are not irreducible form the sequence.
Analog for GF(2)[X] of Fermat pseudoprimes A001567.
When P includes the constant term 1 (as all primitive polynomials do), the test is equivalent to X^(2^n)=X(mod P), which is easier to compute.

Examples

			83, that is 1010011 in binary, represents the polynomial P(X)=X^6+X^4+X+1 of degree n=6. It is in the sequence because X^63+1 == 0 (mod P), and P is reducible since P(X)=(X+1)(X^2+X+1)(X^3+X+1) in GF(2)[X].
		

Crossrefs

Cf. A014580. Subsequence of A091242.

Programs

  • Mathematica
    For[p=3,p<5449,p+=2,P=0;Y=1;m=p;While[m>0,If[OddQ[m],P+=Y;m-=1];Y*=x;m/=2];If[PolynomialRemainder[x^(2^Exponent[P,x]-1),P,x,Modulus->2]==1&&!IrreduciblePolynomialQ[P,Modulus->2],Print[p]]]
Previous Showing 41-48 of 48 results.