cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A361626 Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x)^2.

Original entry on oeis.org

1, 3, 17, 139, 1437, 17711, 252133, 4059567, 72779129, 1435276027, 30836352441, 716101686323, 17858449006357, 475653606922599, 13467411746316557, 403708230041927191, 12767545998797849073, 424670548932688771187, 14814998283177691422049
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)^2))
    
  • PARI
    a(n)=n! * sum(k=0, n, binomial(n+2*k+1,n-k)/k!) \\ Winston de Greef, Mar 18 2023

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+2*k+1,n-k)/k! = Sum_{k=0..n} (n+2*k+1)!/(3*k+1)! * binomial(n,k).
a(n) ~ 3^(5/8) * exp(-1/27 - 3^(3/4)*n^(1/4)/72 + sqrt(3*n)/6 + 4*3^(-3/4)*n^(3/4) - n) * n^(n + 3/8) / 6 * (1 + 63037 * 3^(1/4)/(69120 * n^(1/4))). - Vaclav Kotesovec, Mar 29 2023

A386514 Expansion of e.g.f. exp(x^2/(1-x)^3).

Original entry on oeis.org

1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0

Views

Author

Enrique Navarrete, Aug 23 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to linearly order n distinguishable objects into one or several lines and then choose 2 objects from each line. If the lines are also linearly ordered see A364524.
A001804(n) is the number of ways if only 1 line is used.

Examples

			a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

From Vaclav Kotesovec, Aug 24 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 3*k-1) / k!.
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-7)*a(n-2) + (n-2)*(n-1)*(4*n-11)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(1/27 - 3^(-5/4)*n^(1/4)/8 - 3^(-1/2)*n^(1/2)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n-1/8) / 2. (End)

A380641 Expansion of e.g.f. exp(x/(1 - 3*x)^3).

Original entry on oeis.org

1, 1, 19, 379, 8857, 244801, 7904251, 292980619, 12257946289, 570627408097, 29212843607011, 1629314013114811, 98250285167099209, 6365331315043185889, 440712959779710869707, 32460639303987670526731, 2533396174719346231613281, 208776665140069914314618689
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[3^k * Binomial[3*n-2*k-1,k]/(n-k)!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jan 29 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, 3^k*binomial(3*n-2*k-1, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} 3^k * binomial(3*n-2*k-1,k)/(n-k)!.
E.g.f.: exp( Sum_{k>=1} k*(k+1)/2 * 3^(k-1) * x^k ).
From Vaclav Kotesovec, Jan 29 2025: (Start)
a(n) = (12*n-11)*a(n-1) - 6*(n-1)*(9*n-19)*a(n-2) + 108*(n-3)*(n-2)*(n-1)*a(n-3) - 81*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^n * n^(n - 1/8) / (2 * exp(n - 4*n^(3/4)/3 - sqrt(n)/6 + n^(1/4)/72 + 1/81)) * (1 + 16957/(207360*n^(1/4))). (End)
Previous Showing 11-13 of 13 results.