cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A091728 Number of prime ideals of Z[sqrt(-5)] of norm n.

Original entry on oeis.org

0, 1, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Paul Boddington, Feb 02 2004

Keywords

Comments

It follows that the total number of ideals of norm n is A035170(n).

References

  • David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
  • A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.

Crossrefs

Programs

  • PARI
    isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); };
    A091728(n) = if(!isA091727(n),0,(2-((2==n)||(5==n)||issquare(n)))); \\ Antti Karttunen, Feb 24 2020

Formula

a(n)=0 if n is not in A091727. If n is in A091727 and n is 2, 5 or a square then a(n)=1. Otherwise a(n)=2.

Extensions

Data section extended up to a(121) by Antti Karttunen, Feb 24 2020

A225659 Primes p where p + sumOfDigits(p) +- 3 is prime.

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 131, 137, 139, 157, 173, 179, 191, 197, 223, 227, 229, 241, 263, 269, 283, 311, 313, 317, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 463, 467, 487, 557
Offset: 1

Views

Author

John-Å. W. Olsen, May 11 2013

Keywords

Comments

a(n) = A068690(n), A030144(n), A069556(n), A091727(n), A156756(n) if n<14.

Examples

			If p = 409, then 409 + sod(409) +- 3 = 409+13 - 3 = 419, which is prime.
If p =  23, then  23 + sod(23)  +- 3 = 23+5   + 3 = 31,  which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[102]],Or@@PrimeQ[#+Total[IntegerDigits[#]]+{3,-3}] &] (* Jayanta Basu, May 23 2013 *)
  • PARI
    ok(p)= {my(s=vecsum(digits(p)));isprime(p) && (isprime(p+s-3) || isprime(p+s+3))}
    select(ok,[1..1000]) \\ Andrew Howroyd, Feb 22 2018
Previous Showing 11-12 of 12 results.