cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A111525 a(1) = 10; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

10, 1, 3, 3, 3, 29, 1, 3, 3, 11, 9, 7, 23, 61, 11, 3, 91, 137, 7, 11, 31, 93, 17, 9, 273, 51, 397, 9, 99, 41, 111, 129, 111, 801, 109, 131, 297, 37, 621, 21, 807, 143, 87, 57, 231, 187, 53, 169, 77, 613, 867, 41, 199, 773, 523, 227, 27, 499, 171, 329, 67, 483, 393, 179
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 10; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}]

A069602 a(1) = 1; a(n) = smallest composite number such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

1, 9, 9, 9, 21, 9, 51, 21, 9, 57, 301, 51, 51, 33, 209, 111, 87, 153, 121, 87, 63, 39, 77, 27, 57, 81, 129, 147, 111, 21, 147, 321, 69, 93, 153, 621, 817, 129, 81, 803, 129, 153, 451, 171, 717, 801, 959, 459, 187, 291, 231, 533, 399, 291, 289, 869, 489, 171, 381, 667, 21
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2002

Keywords

Examples

			a(5) = 21 and the number 199921 is a prime.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = 3, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[PrimeQ[k] || !PrimeQ[FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 61}] (* Robert G. Wilson v, Aug 05 2005 *)
    nxt[{jx_,a_}]:=Module[{c=9},While[PrimeQ[c]||CompositeQ[jx*10^IntegerLength[c]+c],c+=2];{jx*10^IntegerLength[c]+c,c}]; NestList[nxt,{1,1},60][[;;,2]] (* Harvey P. Dale, Feb 08 2025 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 31 2003

A069604 a(1) = 1; for n>1, a(n) = smallest number with all odd digits giving a prime in concatenation with the previous terms.

Original entry on oeis.org

1, 1, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 399, 11, 9, 133, 3, 11, 51, 111, 13, 53, 31, 3, 173, 1, 317, 519, 579, 1, 573, 357, 5111, 39, 51, 73, 3317, 1977, 5173, 579, 357, 359, 9, 57, 3991, 959, 951, 7, 111, 1959, 39, 191, 3357, 3151, 3137, 577, 117, 1353, 951, 153, 99
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2002

Keywords

Examples

			a(5) = 1 and the number 113111 is a prime.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ Union[ Mod[ IntegerDigits[k], 2]] != {1} || !PrimeQ[ FromDigits[ Join[ Flatten[c], IntegerDigits[k]]]], k = k + 1]; k]; Table[ a[n], {n, 61}] (* corrected by Jason Yuen, Jun 22 2025 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A110435 Beginning with 11, least number such that every partial concatenation is a prime.

Original entry on oeis.org

11, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 21, 53, 79, 11, 19, 59, 27, 49, 21, 23, 211, 153, 189, 3, 161, 121, 167, 183, 193, 77, 21, 349, 107, 129, 343, 119, 241, 143, 37, 77, 31, 159, 183, 531, 1517, 7, 59, 159, 123, 9, 1513, 203, 343, 59, 9, 999
Offset: 1

Views

Author

Amarnath Murthy, Aug 03 2005

Keywords

Comments

As n tends to infinity, does everyy term in A045572 arise infinitely many often and with same frequency? - Stefan Steinerberger, Feb 05 2006

Examples

			11,113,11311,113111,1131113,11311133 are all prime.
		

Formula

a(n)=A092528(n+1), n>1. [From R. J. Mathar, Aug 18 2008]

Extensions

More terms from Stefan Steinerberger, Feb 05 2006
Previous Showing 11-14 of 14 results.