cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A367117 Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of vertices in the resulting planar graph.

Original entry on oeis.org

3, 12, 72, 282, 795, 1818, 3612, 6492, 10827, 17040, 25608, 37062, 51987, 71022, 94860, 124248, 159987, 202932, 253992, 314130, 384363, 465762, 559452, 666612, 788475, 926328, 1081512, 1255422, 1449507, 1665270, 1904268, 2168112, 2458467, 2777052, 3125640, 3506058, 3920187, 4369962
Offset: 0

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.
Note that although the number of k-gons in the graph will vary as the edge points change position, the total number of regions will stay constant as long as all internal vertices remain simple.

Crossrefs

Cf. A367118 (regions), A367119 (edges).
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023

Programs

Formula

Theorem: a(n) = (3/4)*(n+1)*(3*n^3+n^2+4).
a(n) = A367119(n) - A367118(n) + 1 by Euler's formula.

A367118 Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of regions in the resulting planar graph.

Original entry on oeis.org

1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417, 71527, 95446, 124921, 160753, 203797, 254962, 315211, 385561, 467083, 560902, 668197, 790201, 928201, 1083538, 1257607, 1451857, 1667791, 1906966, 2170993, 2461537, 2780317, 3129106, 3509731, 3924073, 4374067
Offset: 0

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.

Crossrefs

Cf. A367117 (vertices), A367119 (edges), A091908, A092098, A331782, A367015.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023

Formula

Conjecture: a(n) = (1/4)*(9*n^4 + 12*n^3 + 15*n^2 + 12*n + 4).
a(n) = A367119(n) - A367117(n) + 1 by Euler's formula.

A332953 The number of regions formed inside an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.

Original entry on oeis.org

1, 5, 18, 52, 125, 257, 486, 832, 1333, 2027, 3048, 4304, 6057, 8167, 10749, 13929, 18058, 22664, 28533, 34981, 42519, 51425, 62118, 73473, 86768, 101902, 118695, 137138, 159147, 181752, 208813, 237209, 268614, 303718, 340882, 380811, 427540, 477134, 530047
Offset: 1

Views

Author

Keywords

Comments

The terms are from numeric computation - no formula for a(n) is currently known.
Equivalently, this is also the number of regions formed when all the integer points along the x and y axes with 0 <= x <= n and 0 <= y <= n are joined by straight line segments.
If instead one takes points on the x and y axes with coordinates 1, 1/2, 1/3, 1/4, ..., 1/n, 0, and joins them all by line segments, the resulting figure contains only triangles and quadrilaterals, and the number of regions is given by A332358 (and more generally by A332357 if there are m+1 such points on the x axis and n+1 such points on the y axis).

Crossrefs

Cf. A333025 (n-gons), A333026 (vertices), A333027 (edges), A007678, A092867, A331452, A331911, A332357, A332358.

Extensions

a(16) and beyond from Lars Blomberg, May 26 2020

A333025 Irregular table read by rows: Take an isosceles triangle with its equal length sides divided into n equal parts with all diagonals drawn, as in A332953. Then T(n,k) = number of k-sided polygons in that figure for k>=3.

Original entry on oeis.org

1, 5, 14, 3, 1, 29, 19, 4, 50, 66, 9, 81, 164, 12, 134, 313, 37, 2, 219, 546, 60, 7, 359, 853, 112, 9, 556, 1294, 160, 16, 1, 779, 1940, 283, 43, 3, 1105, 2780, 360, 53, 6, 1540, 3750, 670, 91, 5, 1, 2087, 5064, 873, 132, 11, 2806, 6625, 1144, 164, 7, 3
Offset: 1

Views

Author

Keywords

Comments

See the links in A332953 for images of the triangles.

Examples

			Table begins:
1;
5;
14, 3, 1;
29, 19, 4;
50, 66, 9;
81, 164, 12;
134, 313, 37, 2;
219, 546, 60, 7;
359, 853, 112, 9;
556, 1294, 160, 16, 1;
779, 1940, 283, 43, 3;
1105, 2780, 360, 53, 6;
1540, 3750, 670, 91, 5, 1;
2087, 5064, 873, 132, 11;
2806, 6625, 1144, 164, 7, 3;
The row sums are A332953.
		

Crossrefs

Cf. A332953 (regions), A333026 (vertices), A333027 (edges), A007678, A092867, A331452, A331911, A332357, A332358.

A333027 The number of edges formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.

Original entry on oeis.org

3, 10, 33, 96, 235, 486, 933, 1600, 2561, 3884, 5907, 8310, 11793, 15890, 20863, 27002, 35229, 44117, 55820, 68312, 82931, 100368, 121711, 143685, 169750, 199509, 232366, 268169, 312132, 355839, 409902, 465503, 527080, 596443, 668961, 746443, 839830, 937967
Offset: 1

Views

Author

Keywords

Comments

See the links in A332953 for images of the triangles.

Crossrefs

Cf. A332953 (regions), A333025 (n-gons), A333026 (vertices), A007678, A092867, A331452, A331911, A332357, A332358.

Extensions

a(16) and beyond from Lars Blomberg, May 26 2020

A344657 Number of vertices formed by infinite lines when connecting all vertices and all points that divide the sides of an equilateral triangle into n equal parts.

Original entry on oeis.org

3, 10, 85, 310, 999, 2299, 4674, 8878, 14539, 23116, 35922, 53830, 74685, 106957, 140887, 183718, 240108, 315997, 392049, 497518, 599596, 730762, 888903, 1083277, 1257270, 1502830, 1760371, 2047792, 2362620, 2771437, 3129933, 3629443, 4107994, 4670305, 5245447, 5921755
Offset: 1

Views

Author

Scott R. Shannon, Jun 24 2021

Keywords

Comments

See A344279 for other images of the polygons.

Crossrefs

Cf. A344279 (number of polygons), A344896 (number of edges), A092867 (number polygons inside the triangle), A346446 (number of k-gons), A345649, A146212.

Formula

a(n) = A344896(n) - A344279(n) + 1.

A356984 Number of regions in an equilateral triangle when n internal equilateral triangles are drawn between the 3n points that divide each side into n+1 equal parts.

Original entry on oeis.org

1, 4, 13, 28, 49, 70, 109, 148, 181, 244, 301, 334, 433, 508, 565, 676, 769, 811, 973, 1069, 1165, 1324, 1453, 1534, 1729, 1876, 1957, 2182, 2353, 2446, 2701, 2884, 3013, 3268, 3454, 3538, 3889, 4108, 4261, 4519, 4801, 4960, 5293, 5536, 5668, 6076, 6349, 6502, 6913, 7204, 7405, 7798, 8113
Offset: 0

Views

Author

Scott R. Shannon, Sep 08 2022

Keywords

Comments

See A357007 for further images.

Crossrefs

Cf. A357007 (vertices), A357008 (edges), A092867, A092098, A332953, A343755.

Formula

a(n) = A357008(n) - A357007(n) + 1 by Euler's formula.
Conjecture: a(n) = 3*n^2 + 1 for equilateral triangles that only contain simple vertices when cut by n internal equilateral triangles. This is never the case if (n + 1) mod 3 = 0 for n > 3.
a(n) = 1 + 3*n + T2(n) + 2*T3(n) + 3*T4(n); a(n) = 1 + 3*n^2 - T3(n) - 3*T4(n), where T2 is the number of internal vertices meeting exactly two segments (these vertices are labeled in the A357007 links as "4 ngons"), T3 is the number of internal vertices meeting exactly three segments ("6 ngons"), and T4 is the number of internal vertices meeting exactly four segments ("8 ngons"). - Talmon Silver, Sep 23 2022

A367119 Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of edges in the resulting planar graph.

Original entry on oeis.org

3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403, 142548, 190305, 249168, 320739, 406728, 508953, 629340, 769923, 932844, 1120353, 1334808, 1578675, 1854528, 2165049, 2513028, 2901363, 3333060, 3811233, 4339104, 4920003, 5557368, 6254745, 7015788
Offset: 0

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.
See A367117 and A367118 for images of the triangle.

Crossrefs

Cf. A367117 (vertices), A367118 (regions), A091908, A092098, A331782, A366932.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023

Formula

Conjecture: a(n) = (3/2)*(3*n^4 + 4*n^3 + 3*n^2 + 4*n + 2).
a(n) = A367117 (n) + A367118 (n) - 1 by Euler's formula.

A329713 The number of regions inside a heptagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

Original entry on oeis.org

50, 868, 5594, 18396, 48462, 101794, 195714, 336504, 549704, 841890, 1249676, 1774612, 2468572, 3328234, 4414054, 5725034, 7336855, 9233098, 11513419, 14149296, 17254434, 20805554, 24928380, 29573348, 34902155, 40861422, 47613161
Offset: 1

Views

Author

Keywords

Comments

The terms are from numeric computation - no formula for a(n) is currently known.

Crossrefs

Cf. A329714 (n-gons), A333112 (edges), A333113 (vertices), A007678, A092867, A331452, A331931.

Extensions

a(8)-a(27) from Lars Blomberg, May 13 2020

A331932 Triangle read by rows: Take a hexagon with all diagonals drawn, as in A331931. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., n+4.

Original entry on oeis.org

18, 6, 0, 264, 108, 36, 0, 1344, 654, 252, 12, 6, 4164, 2772, 1020, 228, 24, 0, 10038, 7758, 2424, 516, 72, 24, 0, 21108, 16188, 6060, 1128, 156, 0, 0, 0, 39690, 32022, 13368, 3654, 432, 48, 0, 0, 0, 68052, 56616, 22980, 6084, 888, 120, 12, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

See the links in A331931 for images of the hexagons.

Examples

			A hexagon with no other points along its edges, n = 1, contains 18 triangles, 6 quadrilaterals and no other n-gons, so the first row is [18,6,0]. A hexagon with 1 point dividing its edges, n = 2, contains 264 triangles, 108 quadrilaterals, 36 pentagons and no other n-gons, so the second row is [264,108,36,0].
Triangle begins:
  18,6,0
  264,108,36,0
  1344,654,252,12,6
  4164,2772,1020,228,24,0
  10038,7758,2424,516,72,24,0
  21108,16188,6060,1128,156,0,0,0
  39690,32022,13368,3654,432,48,0,0,0
  68052,56616,22980,6084,888,120,12,0,0,0
The row sums are A331931.
		

Crossrefs

Cf. A331931 (regions), A330845 (edges), A330846 (vertices), A331906, A007678, A092867, A331452.
Previous Showing 11-20 of 61 results. Next