cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A304093 a(n) is the number of the proper divisors of n that are Lucas numbers (A000204, with 2 excluded).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 2, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    isA000204(n) = { my(u1=1,u2=3,old_u1); if(n<=2,(n%2),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304093(n) = sumdiv(n,d,(dA000204(d));

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540. - Amiram Eldar, Jul 05 2025

A304094 Number of Lucas numbers (A000204: 1, 3, 4, 7, 11, ... excluding 2) that divide n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 1, 2, 3, 3, 2, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    isA000204(n) = { my(u1=1,u2=3,old_u1); if(n<=2,(n%2),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304094(n) = sumdiv(n,d,isA000204(d));

Formula

a(n) = A304092(n) - A059841(n).
a(n) = A304096(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 = 1.962858... . - Amiram Eldar, Dec 31 2023

A371649 Decimal expansion of Sum_{k>=0} 1/Lucas(5^k).

Original entry on oeis.org

1, 0, 9, 0, 9, 1, 5, 0, 5, 1, 7, 7, 0, 0, 7, 7, 6, 7, 0, 0, 1, 8, 6, 5, 7, 5, 0, 2, 4, 1, 4, 2, 2, 8, 2, 0, 5, 7, 1, 5, 1, 7, 5, 1, 0, 2, 3, 1, 9, 9, 0, 6, 6, 9, 8, 9, 0, 5, 0, 3, 2, 1, 7, 0, 9, 2, 2, 2, 4, 3, 0, 8, 1, 7, 5, 8, 2, 8, 8, 4, 4, 6, 4, 9, 0, 2, 6, 3, 1, 9, 6, 7, 3, 7, 2, 4, 8, 1, 8, 3, 1, 2, 4, 1, 7
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2024

Keywords

Comments

This constant is a transcendental number (Nyblom, 2001).

Examples

			1.09091505177007767001865750241422820571517510231990...
		

Crossrefs

Similar constants: A093540, A338304, A338612, A371647.

Programs

  • Mathematica
    RealDigits[Sum[1/LucasL[5^k], {k, 0, 10}], 10, 120][[1]]
  • PARI
    suminf(k = 0, 1/(fibonacci(5^k-1) + fibonacci(5^k+1)))

Formula

Equals Sum_{k>=0} 1/A144837(k).

A243991 Decimal expansion of sum of reciprocals of Bell numbers for n>0.

Original entry on oeis.org

1, 7, 9, 2, 2, 6, 3, 0, 0, 4, 8, 5, 8, 5, 6, 3, 3, 0, 6, 0, 2, 6, 0, 8, 4, 3, 3, 9, 6, 7, 7, 3, 4, 9, 6, 2, 7, 2, 9, 8, 4, 7, 0, 8, 3, 7, 4, 7, 6, 1, 4, 9, 9, 6, 0, 4, 1, 0, 0, 4, 7, 9, 7, 9, 1, 6, 7, 2, 8, 3, 7, 4, 8, 3, 8, 1, 8, 7, 2, 4, 9, 8, 7, 3, 6, 9, 3, 6, 7, 8, 9, 0, 3, 8, 7, 1, 2, 4, 7, 4, 7, 2
Offset: 1

Views

Author

Keywords

Comments

1.792263004858...

Crossrefs

Programs

  • Maple
    with(combinat, bell): evalf(sum(1/bell(n), n = 1..infinity), 120); # Vaclav Kotesovec, Jan 30 2015

A338612 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/L(k) where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

8, 3, 0, 5, 0, 2, 8, 2, 1, 5, 8, 6, 8, 7, 6, 6, 8, 2, 3, 1, 6, 9, 3, 6, 4, 8, 6, 2, 5, 1, 0, 5, 9, 5, 1, 9, 1, 7, 7, 3, 0, 4, 6, 2, 1, 4, 3, 0, 4, 0, 8, 2, 8, 0, 1, 4, 6, 0, 2, 6, 4, 1, 3, 9, 0, 7, 9, 1, 0, 4, 9, 8, 4, 8, 6, 0, 4, 3, 0, 0, 6, 7, 4, 9, 3, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Nov 03 2020

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)).

Examples

			0.83050282158687668231693648625105951917730462143040...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(n+1)/LucasL[n], {n, 1, 1000}], 10, 120][[1]]

Formula

Equals A153416 - A153415.
Equals Sum_{k>=1} (-1)^(k+1) * Fibonacci(k)/Fibonacci(2*k).
Equals Sum_{k>=1} (-1)^(k+1)/(phi^k + (1-phi)^k), where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/(phi^(2*k+1) + (-1)^k).

A346588 Decimal expansion of the sum of reciprocals of tribonacci numbers A000213.

Original entry on oeis.org

3, 7, 7, 3, 9, 4, 8, 0, 6, 0, 1, 9, 7, 0, 1, 5, 8, 1, 8, 3, 8, 5, 4, 0, 2, 4, 2, 6, 6, 2, 9, 5, 1, 2, 7, 4, 9, 7, 6, 8, 0, 7, 4, 1, 7, 3, 2, 2, 2, 5, 8, 4, 3, 8, 0, 8, 8, 1, 3, 1, 6, 1, 8, 5, 0, 8, 4, 3, 3, 7, 8, 3, 8, 1, 7, 1, 7, 8, 1, 7, 2, 6, 3, 6, 5, 0, 4, 1, 2, 2, 5, 5, 8, 7, 9, 7, 4, 2, 3, 4, 5, 7, 5, 0, 1
Offset: 1

Views

Author

Christoph B. Kassir, Jul 24 2021

Keywords

Examples

			3.7739480601970158183854024266295127497680741732225...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[1/LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 500]], 10, 105][[1]] (* Amiram Eldar, Jul 26 2021 *)

Extensions

More terms from Jon E. Schoenfield, Jul 25 2021
Previous Showing 11-16 of 16 results.