cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A092796 Number of connected relations.

Original entry on oeis.org

1, 213, 14857, 694485, 27005881, 957263493, 32333393737, 1064686990965, 34589700409561, 1115777278022373, 35856732186282217, 1149998292486777045, 36843831022923582841, 1179748027215029366853, 37764598757179830172297, 1208682260675932309564725
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n.
G.f.: -x*(132960*x^5 + 145292*x^4 - 17528*x^3 - 1227*x^2 + 122*x + 1) / ((6*x-1)*(7*x-1)*(8*x-1)*(10*x-1)*(11*x-1)*(17*x-1)*(32*x-1)). - Colin Barker, Jul 13 2013

Extensions

Additional term from Colin Barker, Jul 13 2013

A092797 Number of connected relations.

Original entry on oeis.org

1, 667, 108817, 10796275, 858251401, 61283936827, 4147211888737, 273109341611395, 17736960725057401, 1143745441025278987, 73483870162431314257, 4712360023676936085715, 301901195708380781658601, 19331914197940256185117147, 1237580377249840094294765377
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n.
G.f.: x*(54888451200*x^9 +55706052240*x^8 -14450714964*x^7 -624924*x^6 +247511131*x^5 -22659769*x^4 +564934*x^3 +10694*x^2 -461*x -1) / ((7*x -1)*(8*x -1)*(9*x -1)*(10*x -1)*(11*x -1)*(12*x -1)*(15*x -1)*(18*x -1)*(19*x -1)*(33*x -1)*(64*x -1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013
Previous Showing 11-12 of 12 results.