cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A384305 Expansion of Product_{k>=1} 1/(1 - k*x)^((5/6)^k).

Original entry on oeis.org

1, 30, 615, 11260, 205695, 4013406, 88035585, 2255192280, 68859250020, 2506898720040, 107238427737876, 5281094776037040, 293625956135692020, 18139856902224931080, 1229886945212115522060, 90641666662687182976896, 7206758883035555464430370, 614391718014749017022916060
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -5*A[x] + 6*A[x/(1-x)]^(5/6) / (1-x)^5 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 31 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(6*sum(k=1, N, sum(j=0, k, 5^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(5/6) / (1-x)^5.
G.f.: exp(6 * Sum_{k>=1} A094418(k) * x^k/k).
G.f.: B(x)^30, where B(x) is the g.f. of A090358.
a(n) ~ (n-1)! / log(6/5)^(n+1). - Vaclav Kotesovec, May 31 2025

A238466 Generalized ordered Bell numbers Bo(9,n).

Original entry on oeis.org

1, 9, 171, 4869, 184851, 8772309, 499559571, 33190014069, 2520110222451, 215270320769109, 20431783142389971, 2133148392099721269, 242954208655633344051, 29977118969127060357909, 3983272698956314883956371, 567091857051921058649396469
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 9 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(10 - 9*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(10 - 9 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(10 - 9*exp(x)).
a(n) ~ n! / (10*(log(10/9))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 9*a(n-1) - 10*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A238467 Generalized ordered Bell numbers Bo(10,n).

Original entry on oeis.org

1, 10, 210, 6610, 277410, 14553010, 916146210, 67285818610, 5647734061410, 533307215001010, 55954905981282210, 6457903731351210610, 813080459351919805410, 110901542660769629769010, 16290196917457939734258210
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 10 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(11 - 10*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(11 - 10 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(11 - 10*exp(x)).
a(n) ~ n! / (11*(log(11/10))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 10*a(n-1) - 11*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023
Previous Showing 21-23 of 23 results.