A259091 Smallest k such that 2^k contains two adjacent copies of n in its decimal expansion.
53, 40, 43, 25, 18, 16, 46, 24, 19, 33, 378, 313, 170, 374, 361, 359, 64, 34, 507, 151, 348, 246, 314, 284, 349, 314, 261, 151, 385, 166, 156, 364, 65, 219, 371, 359, 503, 148, 155, 352, 349, 308, 247, 255, 192, 387, 165, 149, 171, 150, 210, 155, 209, 101, 505
Offset: 0
Examples
2^53 = 9007199254740992 contains two adjacent 0's.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
- Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
Programs
-
Mathematica
Table[k = 0; While[! SequenceCount[IntegerDigits[2^k], Flatten[ConstantArray[IntegerDigits[n], 2]]] > 0, k++]; k, {n, 0, 100}] (* Robert Price, May 17 2019 *)
-
Python
def A259091(n): s, k, k2 = str(n)*2, 0, 1 while True: if s in str(k2): return k k += 1 k2 *= 2 # Chai Wah Wu, Jun 18 2015
Extensions
More terms from Chai Wah Wu, Jun 18 2015
Comments