cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 143 results. Next

A095326 Number of A095316-primes in range [2^n,2^(n+1)].

Original entry on oeis.org

1, 2, 2, 5, 7, 13, 20, 42, 65, 122, 203, 412, 718, 1413, 2381, 4859, 8266, 16955, 28995, 60484, 105524, 216830, 376969, 785885, 1383287, 2867949, 5044969, 10544609, 18699214, 39034399, 69349061, 145210901, 259051224
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 1, 1, 1, 1, 1, 1, 0.869565, 0.976744, 0.866667, 0.890511, 0.796078, 0.887931, 0.823394, 0.876551, 0.785809, 0.851112, 0.769002, 0.831535, 0.750485, 0.82195, 0.751938, 0.808416, 0.73382, 0.797191, 0.730306, 0.786657, 0.717911, 0.777517, 0.713512, 0.769947, 0.706327, 0.76292, 0.701421

Crossrefs

a(n) = A036378(n)-A095327(n).

A095327 Number of A095317-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 1, 10, 15, 52, 52, 154, 199, 649, 850, 2483, 3435, 9640, 13102, 34812, 51386, 136739, 199933, 510833, 777795, 1982321, 3017298, 7508064, 11663138, 28833595, 45124684, 110272081
Offset: 1

Views

Author

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 0, 0, 0, 0, 0, 0, 0.130435, 0.023256, 0.133333, 0.109489, 0.203922, 0.112069, 0.176606, 0.123449, 0.214191, 0.148888, 0.230998, 0.168465, 0.249515, 0.17805, 0.248062, 0.191584, 0.26618, 0.202809, 0.269694, 0.213343, 0.282089, 0.222483, 0.286488, 0.230053, 0.293673, 0.23708, 0.298579, ...

Crossrefs

a(n) = A036378(n)-A095326(n).

A095329 Number of A095319-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 2, 2, 4, 4, 12, 19, 30, 43, 102, 159, 340, 537, 1146, 1914, 3992, 6378, 14010, 23145, 49682, 82295, 180016, 303833, 654049, 1098521, 2387358, 4075501, 8820563, 15062515, 32732736, 56401388, 121964573, 210680037
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 1, 1, 1, 0.8, 0.571429, 0.923077, 0.826087, 0.697674, 0.573333, 0.744526, 0.623529, 0.732759, 0.615826, 0.710918, 0.631683, 0.699247, 0.593358, 0.687102, 0.599068, 0.675156, 0.586414, 0.671161, 0.591451, 0.663458, 0.579964, 0.654834, 0.579953, 0.650393, 0.574745, 0.645647, 0.574454, 0.640787, 0.570449
Ratios a(n)/A095020(n) converge as: 1, 1, 1, 1, 0.8, 1.2,1.1875, 0.9375, 0.895833, 1.051546, 0.908571, 1.017964, 1.015123,1.014159, 1.034595, 1.009866, 1.016252, 1.007117, 0.99557, 1.002381,1.008245, 1.006182, 1.011728, 1.005142, 1.006148, 1.002926, 1.00328,1.004575, 1.002721, 1.003502, 1.004757, 1.002787, 1.003766

Crossrefs

a(n) = A036378(n)-A095328(n).

A095330 Number of A095320-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 2, 2, 5, 7, 13, 23, 42, 71, 122, 241, 412, 789, 1413, 2770, 4859, 9545, 16955, 34039, 60484, 121241, 216830, 441223, 785885, 1597803, 2867949, 5874665, 10544609, 21636090, 39034399, 80414166, 145210901, 299284792
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 1, 1, 1, 1, 1, 1, 1, 0.976744, 0.946667, 0.890511, 0.945098, 0.887931, 0.904817, 0.876551, 0.914191, 0.851112, 0.88799, 0.831535, 0.881041, 0.82195, 0.863934, 0.808416, 0.858898, 0.797191, 0.84356, 0.786657, 0.835979, 0.777517, 0.825576, 0.769947, 0.819026, 0.76292, 0.81036

Crossrefs

a(n) = A036378(n)-A095331(n).

A095331 Number of A095321-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 4, 15, 14, 52, 83, 199, 260, 850, 1204, 3435, 4596, 13102, 19095, 51386, 72485, 199933, 296317, 777795, 1152625, 3017298, 4571188, 11663138, 17768490, 45124684, 70038513
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 0, 0, 0, 0, 0, 0, 0, 0.023256, 0.053333, 0.109489, 0.054902, 0.112069, 0.095183, 0.123449, 0.085809, 0.148888, 0.11201, 0.168465, 0.118959, 0.17805, 0.136066, 0.191584, 0.141102, 0.202809, 0.15644, 0.213343, 0.164021, 0.222483, 0.174424, 0.230053, 0.180974, 0.23708, 0.18964

Crossrefs

a(n) = A036378(n)-A095330(n).

A095335 Number of A095315-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 19, 22, 43, 68, 159, 235, 537, 844, 1914, 2849, 6378, 10138, 23145, 37023, 82295, 134477, 303833, 494625, 1098521, 1829183, 4075501, 6789809, 15062515, 25412867, 56401388, 95440507, 210680037
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 1, 0.5, 1, 0.4, 0.571429, 0.615385, 0.826087, 0.511628, 0.573333, 0.49635, 0.623529, 0.506466, 0.615826, 0.523573, 0.631683, 0.499037, 0.593358, 0.497205, 0.599068, 0.503126, 0.586414, 0.501376, 0.591451, 0.501741, 0.579964, 0.501731, 0.579953, 0.500653, 0.574745, 0.501264, 0.574454, 0.501433, 0.570449
Ratios a(n)/A095296(n) converge as: 1, 1, 1, 0.666667, 0.8,1.6, 1.1875, 1.047619, 0.895833, 0.985507, 0.908571, 1.026201,1.015123, 1.098958, 1.034595, 0.996154, 1.016252, 0.98888, 0.99557,1.012581, 1.008245, 1.005518, 1.011728, 1.006987, 1.006148, 1.006948,1.00328, 1.002615, 1.002721, 1.00507, 1.004757, 1.005748, 1.003766

Crossrefs

a(n) = A036378(n)-A095334(n).

A095353 Sum of 1-fibits in Zeckendorf-expansion A014417(p) summed for all primes p in range [Fib(n+1),Fib(n+2)[ (where Fib = A000045).

Original entry on oeis.org

0, 1, 1, 3, 2, 7, 7, 14, 23, 35, 56, 94, 155, 243, 402, 614, 1061, 1656, 2689, 4295, 6938, 11176, 18095, 29102, 46907, 75703, 122174, 197494, 317987, 514611, 829595, 1340861, 2166008, 3497040, 5645418, 9120129, 14733126, 23803219, 38460014
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratio a(n)/A095354(n) (i.e. average number of 1-fibits in Zeckendorf-expansions of primes p which Fib(n+1) <= p < Fib(n+2)) grows as: 1, 1, 1, 1.5, 2., 2.333333, 2.333333, 2.8, 3.285714, 3.181818, 3.5, 3.916667, 4.189189, 4.418182, 4.785714, 4.873016, 5.358586, 5.575758, 5.871179, 6.100852, 6.382705, 6.676225, 6.954266, 7.223132, 7.489542, 7.773978, 8.045173, 8.331323, 8.598659, 8.886546, 9.161734, 9.440489, 9.71936, 9.995484, 10.266207, 10.54327, 10.820602, 11.096084, 11.374267.
Ratio of that average compared to A010049(n)/A000045(n) (the expected value of that same sum computed for all integers in the same range) converges as: 1, 1, 0.666667, 0.9, 1, 1.037037, 0.919192, 0.99661, 1.063946, 0.945946, 0.96142, 1, 0.999059, 0.988519, 1.008389, 0.970278, 1.011305, 1.000122, 1.003368, 0.995592, 0.996635, 0.999338, 0.999601, 0.998575, 0.997298, 0.998427, 0.997837, 0.999078, 0.998056, 0.99941, 0.999296, 0.999567, 0.999834, 0.999811, 0.999265, 0.999347, 0.999451, 0.999382, 0.999555.

Examples

			a(1) = a(2) = 0, as there are no primes in ranges [1,2[ and [2,3[. a(3)=1 as in [3,5[ there is prime 3 with Fibonacci-representation 100. a(4)=3, as in [5,8[ there are primes 5 and 7, whose Fibonacci-representations are 1000 and 1010 respectively and we have three 1-fibits in total. a(5)=2, as in [8,13[ there is only one prime 11, with Zeckendorf-representation 10100.
		

Crossrefs

Cf. A095336, A095298 (similar sums and ratios computed in binary system).

Extensions

a(2) corrected by Chai Wah Wu, Jan 16 2020

A095354 Number of primes p such that Fib(n+1) <= p < Fib(n+2), (where Fib = A000045).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 5, 7, 11, 16, 24, 37, 55, 84, 126, 198, 297, 458, 704, 1087, 1674, 2602, 4029, 6263, 9738, 15186, 23705, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419527, 13298631
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Examples

			I.e. gives the number of primes whose Zeckendorf-expansion is n fibits long. a(1) = a(2) = 0, as there are no primes in ranges [1,2[ and [2,3[. a(3)=1 as in [3,5[ there is prime 3 with Fibonacci-representation 100. a(4)=2, as in [5,8[ there are primes 5 and 7. a(5)=1, as in [8,13[ there is only one prime 11 and a(6)=3 as in [13,21[ there are primes 13,17,19.
		

Crossrefs

Extensions

a(2) corrected by Chai Wah Wu, Jan 16 2020

A095731 Number of such primes p (A095730) such that Fib(n+1) <= p < Fib(n+2) (where Fib = A000045) and p's Zeckendorf-expansion A014417(p) is palindromic.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 3, 3, 0, 4, 8, 0, 15, 4, 0, 20, 42, 0, 44, 35, 0, 67, 147, 0, 231, 147, 0, 209, 538, 0, 833, 450, 0, 819, 2064, 0, 1701
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Crossrefs

A095732 Sum of A095734(p) for all primes p such that Fib(n+1) <= p < Fib(n+2) (where Fib = A000045).

Original entry on oeis.org

0, 0, 1, 3, 1, 3, 7, 10, 12, 23, 31, 58, 93, 171, 243, 422, 634, 1142, 1684, 2971, 4406, 7768, 11502, 20502, 30242, 53039, 79161, 138410, 207536, 362391, 544895, 947189, 1431794, 2473232, 3749944, 6459373, 9823917, 16879245, 25745781, 44112347
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Ratio a(n)/A095354(n) converges as follows: 1, 1, 1, 1.5, 1, 1, 2.333333, 2, 1.714286, 2.090909, 1.9375, 2.416667, 2.513514, 3.109091, 2.892857, 3.349206, 3.20202, 3.845118, 3.676856, 4.22017, 4.053358, 4.640382, 4.420446, 5.088608, 4.828676, 5.446601, 5.212762, 5.838853, 5.611963, 6.257939, 6.017615, 6.668795, 6.424778, 7.069164, 6.819283, 7.467319, 7.215081, 7.868411, 7.614126, 8.269242

Examples

			a(1) = a(2) = 0, as there are no primes in ranges [1,2[ and [2,3[. a(3)=1 as in [3,5[ there is prime 3 with Fibonacci-representation 100, which is just a one fibit-flip away from being a palindrome (i.e. A095734(3)=1). a(4)=3, as in [5,8[ there are primes 5 and 7, whose Fibonacci-representations are 1000 and 1010 respectively and the other needs one bit-flip and the other two to become palindromes and 1 + 2 = 3. a(5)=1, as in [8,13[ there is only one prime 11, with Zeckendorf-representation 10100, which needs to have just its least significant fibit flipped from 0 to 1 to become palindrome.
		

Crossrefs

Cf. A095730, A095731, A095742 (sums of similar assymetricity measures for binary-expansion).
Previous Showing 101-110 of 143 results. Next